主要介绍几种常用的分类评估指标,同时介绍如何绘制ROC曲线以及AUC值的便捷的计算方法。
precision和Recall
首先来看一下这个表格:
pred_label/true_labe | positive | Negative |
---|---|---|
positive | TP | FP |
negtive | FN | TN |
如上表所示,行表示预测的label值,列表示真实label值。TP,FP,FN,TN分别代表以下意思:
- TP(ture positive):表示样本的真实类别为正,最后预测得到的结果也为正;
- FP(false positive):表示样本的真实类别为负,最后预测得到的结果却为正;
- FN(false negative):表示样本的真实类别为正&#x