分类的性能评估指标

本文深入探讨了分类任务中常用的评估指标,包括Precision、Recall、Accuracy、Specificity以及F1-score。通过具体例子解释了它们之间的关系和权衡。同时,详细介绍了ROC曲线的绘制过程及其重要性,以及AUC(Area Under Curve)的计算和意义,强调AUC作为衡量分类器性能的无偏估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要介绍几种常用的分类评估指标,同时介绍如何绘制ROC曲线以及AUC值的便捷的计算方法。

precision和Recall

首先来看一下这个表格:

pred_label/true_labe positive Negative
positive TP FP
negtive FN TN

如上表所示,行表示预测的label值,列表示真实label值。TP,FP,FN,TN分别代表以下意思:

  • TP(ture positive):表示样本的真实类别为正,最后预测得到的结果也为正;
  • FP(false positive):表示样本的真实类别为负,最后预测得到的结果却为正;
  • FN(false negative):表示样本的真实类别为正&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值