机器学习(CS229)笔记二:监督学习之逻辑回归和广义线性模型

本文主要介绍了三种机器学习中的优化方法:一是通过引入激活函数将逻辑回归问题转化为线性回归问题,并利用梯度下降法求解;二是使用牛顿法进行求解;三是详细解析了softmax回归,对于该部分内容建议先学习c231n课程后再深入理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PS:额,这章全是公式,不好理解,重点有3点:

1.如何使用激活函数,将逻辑回归问题化为线性回归问题,然后用梯度下降法进行求解;

2.如何使用牛顿法进行求解;

3.softmax回归的掌握,这个光看推导云里雾里,还是有个基本概念,看看c231n再回来理解;

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值