深度学习机器视觉方向-必备技能

本文介绍了图像处理及计算机视觉的基础理论与算法知识,包括图像增强、分割、特征提取等关键技术,并涵盖了常用的计算机视觉库如Opencv和Halcon。同时,文章还探讨了深度神经网络在该领域的应用,例如CNN、RNN等模型,并列举了多个深度学习框架。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 图像处理及计算机视觉基础理论和算法知识
    1.图像增强
    图像增强主要决绝图像灰度级范围较小造成的对比度较低的问题,目的就是将输出图像的灰度级放大到指定的程度,使得图像中得细节看起来清晰。对比度增强有几种常用得方法:线性变换、分段线性变换、伽马变换、直方图正规化、直方图均衡化、局部自适应直方图均衡化等。
    2.图像分割
    3.特征提取
    4.形态学
    5.边缘提取
  • 计算机视觉开发经验熟悉计算机视觉库
    1.Opencv
    2.Halcon
  • 图像处理相关方法
    1.边缘检测
    2.区域提取
    3.低通滤波
    4.特征提取
    5.交点检测
  • 深度神经网络
    1.cnn
    2.rnn
    3.lstm
    4.gru
    5.faster rcnn
    6.ssd
    7.yolo
  • 深度学习主流框架
    1.caffe
    2.tensorflow
    3.mxnet
    4.pytorch
    5.keras
  • 编程能力
    1.c
    2.c++
    3.python
    4.常用数据结构算法
    5.linux开发环境
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值