- 图像处理及计算机视觉基础理论和算法知识
1.图像增强
图像增强主要决绝图像灰度级范围较小造成的对比度较低的问题,目的就是将输出图像的灰度级放大到指定的程度,使得图像中得细节看起来清晰。对比度增强有几种常用得方法:线性变换、分段线性变换、伽马变换、直方图正规化、直方图均衡化、局部自适应直方图均衡化等。
2.图像分割
3.特征提取
4.形态学
5.边缘提取 - 计算机视觉开发经验熟悉计算机视觉库
1.Opencv
2.Halcon - 图像处理相关方法
1.边缘检测
2.区域提取
3.低通滤波
4.特征提取
5.交点检测 - 深度神经网络
1.cnn
2.rnn
3.lstm
4.gru
5.faster rcnn
6.ssd
7.yolo - 深度学习主流框架
1.caffe
2.tensorflow
3.mxnet
4.pytorch
5.keras - 编程能力
1.c
2.c++
3.python
4.常用数据结构算法
5.linux开发环境
深度学习机器视觉方向-必备技能
最新推荐文章于 2025-06-05 11:38:47 发布