【线性表】- 数组

本文探讨了数组的随机访问原理,解释了为何插入删除操作低效,以及数组与链表的区别。还讨论了数组在编程中的优缺点,容器如Vector如何优化这些问题,并揭示了数组下标从0开始的原因。最后,分析了数组在编程考试中的常见题型和应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。
代码随想录-数组理论基础

1如何实现随机访问?

1.1 线性表(Linear List)

在这里插入图片描述线性表就是数据排成像一条线一样的结构。每个线性表上的数据最多只有前和后两个方向
其实除了数组,链表、队列、栈等也是线性表结构。
在这里插入图片描述非线性表,比如二叉树、堆、图等。
之所以叫非线性,是因为,在非线性表中,数据之间并不是简单的前后关系。

1.2 连续的内存空间和相同类型的数据

正是因为这两个限制,它才有了一个堪称“杀手锏”的特性:“随机访问”。
但有利就有弊,这两个限制也让数组的很多操作变得非常低效,比如要想在数组中删除、插入一个数据,为了保证连续性,就需要做大量的数据搬移工作。

1.2.1 数组是如何实现根据下标随机访问数组元素的?

在这里插入图片描述拿一个长度为 10 的 int 类型的数组 int[] a = new int[10] 来举例。
计算机给数组 a[10]分配了一块连续内存空间 1000~1039,
其中,内存块的首地址为 base_address = 1000。

我们知道,计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。
当计算机需要随机访问数组中的某个元素时,它会首先通过下面的寻址公式,计算出该元素存储的内存地址:
a[i]_address = base_address + i * data_type_size
其中 data_type_size 表示数组中每个元素的大小。

我们举的这个例子里,数组中存储的是 int 类型数据,所以 data_type_size 就为 4 个字节。

数组和链表的区别
数组支持随机访问,根据下标随机访问的时间复杂度为 O(1)

2 数组“插入”和“删除”为什么低效?

2.1插入操作

假设数组的长度为 n,现在,如果我们需要将一个数据插入到数组中的第 k 个位置。为了把第 k 个位置腾出来,给新来的数据,我们需要将第 k~n 这部分的元素都顺序地往后挪一位。

  • 如果在数组的末尾插入元素,那就不需要移动数据了,这时的时间复杂度为 O(1)。

  • 但如果在数组的开头插入元素,那所有的数据都需要依次往后移动一位,所以最坏时间复杂度是 O(n)。 因为我们在每个位置插入元素的概率是一样的,所以平均情况时间复杂度为 (1+2+…n)/n=O(n)。

  • 如果数组中的数据是有序的,我们在某个位置插入一个新的元素时,就必须按照刚才的方法搬移 k 之后的数据。

  • 但是,如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合。在这种情况下,如果要将某个数组插入到第 k 个位置,为了避免大规模的数据搬移,我们还有一个简单的办法就是,直接将第 k 位的数据搬移到数组元素的最后,把新的元素直接放入第 k 个位置。

举个栗子
假设数组 a[10] 中存储了如下 5 个元素:a,b,c,d,e。

我们现在需要将元素 x 插入到第 3 个位置。我们只需要将 c 放入到 a[5],将 a[2] 赋值为 x 即可。最后,数组中的元素如下: a,b,x,d,e,c。
在这里插入图片描述
利用这种处理技巧,在特定场景下,在第 k 个位置插入一个元素的时间复杂度就会降为 O(1)。

2.2 删除操作

跟插入数据类似,如果我们要删除第 k 个位置的数据,为了内存的连续性,也需要搬移数据,不然中间就会出现空洞,内存就不连续了。

  • 如果删除数组末尾的数据,则最好情况时间复杂度为 O(1);
  • 如果删除开头的数据,则最坏情况时间复杂度为 O(n);
  • 平均情况时间复杂度也为 O(n)。

实际上,在某些特殊场景下,我们并不一定非得追求数组中数据的连续性。如果我们将多次删除操作集中在一起执行,删除的效率是不是会提高很多呢?
举个栗子
数组 a[10] 中存储了 8 个元素:a,b,c,d,e,f,g,h。现在,我们要依次删除 a,b,c 三个元素。
在这里插入图片描述
为了避免 d,e,f,g,h 这几个数据会被搬移三次,我们可以先记录下已经删除的数据。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,我们再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。 - 这就是 JVM 标记清除垃圾回收算法的核心思想

2.3数组的访问越界问题

首先,我请你来分析一下这段 C 语言代码的运行结果:

int main(int argc, char* argv[]){
    int i = 0;
    int arr[3] = {0};
    for(; i<=3; i++){
        arr[i] = 0;
        printf("hello world\n");
    }
    return 0;
}

发现问题了吗?这段代码的运行结果并非是打印三行“hello word”,而是会无限打印“hello world”,这是为什么呢?

因为,数组大小为 3,a[0],a[1],a[2],而我们的代码因为书写错误,导致 for 循环的结束条件错写为了 i<=3 而非 i<3,所以当 i=3 时,数组 a[3] 访问越界。

3容器能否完全替代数组?

Vector最大的优势就是可以将很多数组操作的细节封装起来。
比如前面提到的数组插入、删除数据时需要搬移其他数据等。
另外,它还有一个优势,就是支持动态扩容。
如果使用 Vector,我们就完全不需要关心底层的扩容逻辑, Vector已经帮我们实现好了。每次存储空间不够的时候,它都会将空间自动扩容为 2倍大小。

对于业务开发,直接使用容器就足够了,省时省力。毕竟损耗一丢丢性能,完全不会影响到系统整体的性能。但如果你是做一些非常底层的开发,比如开发网络框架,性能的优化需要做到极致,这个时候数组就会优于容器,成为首选

4为什么大多数编程语言中,数组要从 0 开始编号,而不是从 1 开始呢?

从数组存储的内存模型上来看,“下标”最确切的定义应该是“偏移(offset)”。前面也讲到,如果用 a 来表示数组的首地址,a[0] 就是偏移为 0 的位置,也就是首地址,a[k] 就表示偏移 k 个 type_size 的位置,所以计算 a[k] 的内存地址只需要用这个公式:
a[k]_address = base_address + k * type_size
但是,如果数组从 1 开始计数,那我们计算数组元素 a[k] 的内存地址就会变为:
a[k]_address = base_address + (k-1)*type_size
对比两个公式,我们不难发现,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令

数组作为非常基础的数据结构,通过下标随机访问数组元素又是其非常基础的编程操作,效率的优化就要尽可能做到极致。所以为了减少一次减法操作,数组选择了从 0 开始编号,而不是从 1 开始。

历史原因
C 语言设计者用 0 开始计数数组下标,之后的 Java、JavaScript 等高级语言都效仿了 C 语言,或者说,为了在一定程度上减少 C 语言程序员学习 Java 的学习成本,因此继续沿用了从 0 开始计数的习惯。

5数组常考题型

参考:
1.代码随想录
2.极客时间|数据结构与算法
3.一起学计算机

### 如何在线性表数组实现)中插入元素 在使用数组实现的线性表中,插入操作是一种常见的基本操作。以下是关于如何实现这一功能的具体方法和代码示。 #### 插入操作的核心逻辑 为了实现在指定位置 `i` 插入新元素的操作,需要考虑以下几个方面: 1. **检查线性表是否已满**:如果当前线性表中的元素数量已经达到最大容量,则无法继续插入[^2]。 2. **调整现有元素的位置**:从最后一个有效元素开始向前遍历,直到到达目标插入位置 `i` 的前一个位置为止,依次将这些元素向后移动一位[^3]。 3. **放置新元素并更新长度**:将待插入的新元素放入目标位置,并将线性表的有效长度加一。 #### 实现代码示 以下是一个完整的 C++ 代码示,展示如何在线性表中插入元素: ```cpp #include <iostream> using namespace std; #define MaxSize 100 // 定义线性表的最大容量 // 定义顺序表结构体 struct SqList { int data[MaxSize]; // 存储数据的数组 int length; // 当前线性表的实际长度 }; SqList* Insert_SqList(SqList *L, int pos, int value) { if (pos < 1 || pos > L->length + 1) { // 检查插入位置合法性 cout << "插入位置不合法!" << endl; return L; } if (L->length >= MaxSize) { // 如果线性表已满则报错退出 cout << "线性表已满,无法插入!" << endl; return L; } // 将第pos至最后的元素后移一位 for (int i = L->length; i >= pos; --i) { L->data[i] = L->data[i - 1]; } // 在位置pos处插入value L->data[pos - 1] = value; L->length++; // 更新线性表长度 return L; } void PrintList(SqList *L) { for (int i = 0; i < L->length; ++i) { cout << L->data[i] << " "; } cout << endl; } int main() { SqList L; L.length = 7; // 初始化线性表长度为7 int initialData[] = {21, 23, 14, 5, 56, 17, 31}; for (int i = 0; i < L.length; ++i) { L.data[i] = initialData[i]; } cout << "原始线性表:" << endl; PrintList(&L); int insertPos = 3; // 要插入的位置 int newValue = 68; // 待插入的新值 Insert_SqList(&L, insertPos, newValue); cout << "插入后的线性表:" << endl; PrintList(&L); return 0; } ``` 此程序实现了在一个初始含有 `{21, 23, 14, 5, 56, 17, 31}` 的线性表中,在第三个位置插入数值 `68` 的过程[^1]。 #### 关键点解析 - **溢出处理**:当尝试插入超过预设大小的数据时会触发错误提示。 - **边界条件**:需验证给定的插入索引是否合理;即它应该介于 `[1, length+1]` 之间。 - **时间复杂度分析**:最坏情况下(即将新元素插到首位),该算法的时间复杂度为 O(n),其中 n 是列表当前长度[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值