Python环境下基于门控双注意力机制的滚动轴承剩余使用寿命RUL预测(Tensorflow模块)

机械设备的寿命是其从开始工作持续运行直至故障出现的整个时间段,以滚动轴承为例,其寿命为开始转动直到滚动体或是内外圈等元件出现首次出现故障前。目前主流的滚动轴承RUL预测分类方法包含两种:一是基于物理模型的RUL预测方法,二是基于数据驱动的RUL预测方法。

基于物理模型的RUL预测方法是利用物理学模型来描述基于失效机制的物理现象,并在一定的假设条件下建立滚动轴承RUL预测的公式模型。但要想建立精确的滚动轴承退化物理学模型,需要对复杂的轴承结构有深入的了解,需要相关人员有较深厚的知识背景,费时费力,且模型泛化能力弱。数学模型表达退化趋势的前提是构建合理的健康指数。

基于数据驱动的RUL预测方法可分为三个步骤:一是数据获取,在数据采集的过程中通常采用的是振动信号或是声学信号;二是健康指标构建,构建健康指标来监测旋转机械的退化,主要包括均方根、变分模态分解、数学形态谱熵和主成分分析等方法;三是剩余使用寿命预测方法,基于数据驱动的轴承剩余使用寿命预测方法又可分为基于统计模型的轴承剩余使用寿命预测方法和基于人工智能模型的轴承剩余使用寿命预测方法。

该代码为Python环境下基于门控双注意力机制的滚动轴承剩余使用寿命RUL预测(采用Tensorflow模块),所用模块如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as scio

Tensorflow模块版本如下:

tensorflow=2.8.0

所使用的数据为公开数据,试验台如下:

</

### 关于滚动轴承剩余寿命RUL预测的简单方法 对于滚动轴承剩余寿命RUL预测,可以采用基于数据驱动的方法,这种方法通常依赖于机器学习或深度学习技术。以下是几种简单的机器学习方法及其应用: #### 数据预处理的重要性 在进行任何预测之前,数据预处理是一个不可或缺的部分。这包括但不限于创建 RUL 标签、标准化数据以及添加时间步长等操作[^2]。这些步骤能够显著提升模型性能。 #### 基于直接预测方式的简单方法 一种常见的直接预测方法是利用传统的回归算法,例如线性回归和支持向量机(SVM)。这类方法的特点在于其实现较为简便,并且适合初学者快速入门。具体而言,可以直接将提取的特征输入到上述模型中,从而获得对应的 RUL 预测值。 #### 使用 TensorFlow 的实现示例 如果希望尝试更先进的方法并借助 Python 中的 Tensorflow 模块,则可以通过构建一个基础的神经网络来进行 RUL 预测。下面提供了一个简单的代码框架作为参考: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM def build_model(input_shape): model = Sequential() model.add(LSTM(50, input_shape=input_shape, return_sequences=False)) model.add(Dense(1)) # 输出层用于预测 RUL model.compile(optimizer='adam', loss='mse') return model # 输入形状 (time_steps, features) input_shape = (None, None) # 替换为实际的数据维度 model = build_model(input_shape) # 训练模型 history = model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_val, y_val)) ``` 此代码片段展示如何使用 LSTM 架构完成序列建模任务,这对于捕捉时间序列中的动态变化非常有效[^1]。 #### Health Indicator 方法简介 另一种间接预测策略涉及定义健康指示器(Health Indicator),它反映了设备随时间推移而发生的退化情况。通过拟合 HI 曲线至失效阈值位置,可进一步估算出确切的 RUL 数值。该方案尤其适用于那些具有明显衰退模式的情况。 ### 总结 综上所述,在探索滚动轴承 RUL 预测领域时,可以从较容易理解的传统统计分析起步;随着经验积累再逐步过渡到复杂度更高的深度学习解决方案。无论选择哪条路径,请务必重视前期准备工作——即高质量的数据整理与特性工程环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值