Adaptive Transfer Network for Cross-Domain Person Re-Identification

探讨了行人重识别中跨域风格迁移的挑战,通过分析光照、摄像头角度及分辨率差异,采用三个独立的cyclegan进行风格转换,结合权重计算策略,实现了更精准的跨域图像匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

行人重识别之多维度数据库风格迁移

Adaptive Transfer Network for Cross-Domain Person Re-Identification
原文链接

之前研读的数据库风格迁移方面的文章,直接使用cyclegan对风格进行迁移,外加一些损失函数进行约束。这篇文章对数据库之间差异的原因进行分析并分为三类:光照差异、摄像头角度差异、分辨率差异。在此基础上,利用三者进行风格迁移。

在这里插入图片描述
如图所示,是使用本文框架进行风格迁移的三个例子。可以看出,使用三个cyclegan实现光照、摄像头视角、分辨率的风格迁移,然后对其赋予不同的权重,从而合成最后的迁移图像。

其具体框架如下图:
在这里插入图片描述
使用编码器提取三个维度的特征z,然后根据图下的网络计算出的权重对三个特征加权连接,生成新的图像。

与其它论文类似,每一个gan网络的损失函数由三部分组成,gan的损失,cyclegan的损失,类内标签损失。这里再解释一下类内标签损失,即生成后的图像和原图像还是同一个人的特征。损失函数如下所示:
在这里插入图片描述

权重计算方法:
作者认为,三个gan对应的损失越大,那么该图像的这个维度与生成的图像的关联越小。所以,在训练的过程中,作者使用损失的倒数作为三个维度的权重,以获得训练时的标签。训练的输入是图像对,一张来自源域,一张来自目标域。

总结:这篇文章从三个角度进行数据风格迁移,是一个亮点。然而在一些细节方面介绍的实在不够清楚,可能是受困于会议文章的长度。


欢迎讨论 欢迎吐槽

### 跨域自适应教师模型的目标检测代码实现 #### 下载源码与数据集 为了获取 `Cross-Domain Adaptive Teacher` 的源代码,需执行以下命令来克隆仓库: ```bash git clone https://github.com/facebookresearch/adaptive_teacher.git ``` 这一步骤确保了开发环境中有最新的项目文件[^3]。 #### 安装依赖项 进入克隆下来的目录并创建虚拟环境以隔离项目的Python包管理。推荐使用Anaconda作为工具来进行此操作: ```bash cd adaptive_teacher conda create --name at python=3.8 conda activate at pip install -r requirements.txt ``` 上述指令会设置好所需的软件库版本以便顺利运行程序。 #### 数据准备 按照官方文档说明下载所需的数据集,并将其放置于指定路径下。通常情况下,这些资源会被存放在`datasets`文件夹内。具体位置取决于所使用的框架配置文件中的设定。 #### 配置训练参数 编辑配置文件(通常是`.yaml`格式),调整超参数如学习率、批次大小等,使之适合特定的任务需求。对于跨域场景下的微调工作尤其重要的是要仔细定义源域和目标域之间的映射关系[^1]。 #### 启动训练过程 通过脚本启动训练流程,在终端输入类似下面的命令即可开始实验: ```bash python tools/train_net.py --config-file configs/cross_domain_adaptation.yaml ``` 这里指定了一个用于描述整个网络架构及其优化策略的YAML配置文件。 #### 测试与评估 完成一轮或多轮迭代之后,可以利用预训练好的权重对新图像进行推理测试;也可以对比不同方法在同一验证集上的表现差异从而定量分析改进效果。 ```python from detectron2.engine import DefaultPredictor import cv2 cfg = get_cfg() cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # 加载最终模型 predictor = DefaultPredictor(cfg) im = cv2.imread("./input.jpg") outputs = predictor(im) print(outputs["instances"].pred_classes) ``` 这段简单的Python片段展示了如何加载保存下来的最佳模型并对单张图片做出预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值