计算机视觉面试考点(10)池化

计算机视觉工程师在面试过程中主要考察三个内容:图像处理、机器学习、深度学习。然而,各类资料纷繁复杂,或是简单的知识点罗列,或是有着详细数学推导令人望而生畏的大部头。为了督促自己学习,也为了方便后人,决心将常考必会的知识点以通俗易懂的方式设立专栏进行讲解,努力做到长期更新。此专栏不求甚解,只追求应付一般面试。希望该专栏羽翼渐丰之日,可以为大家免去寻找资料的劳累。每篇介绍一个知识点,没有先后顺序。想了解什么知识点可以私信或者评论,如果重要而且恰巧我也能学会,会尽快更新。最后,每一个知识点我会参考很多资料。考虑到简洁性,就不引用了。如有冒犯之处,联系我进行删除或者补加引用。在此先提前致歉了!

池化 pooling
卷积神经网络中的一层,池化层
最直观的作用是降低feature map的维度

两种常用池化

最大池化 max pooling
在这里插入图片描述
平均池化 mean pooling
在这里插入图片描述

最大池化选取最突出的特征,对于纹理信息敏感
平均池化关注数据整体,对背景信息敏感
最大池化用的多,两者也可以交替使用

池化的作用

  • 降低feature map维度,降低参数量和计算量
  • 减少了参数量通常缓解了过拟合
  • 在一定程度上增强了对目标空间位置变化的鲁棒性(平移不变性)
  • 增加了每个像素的感受野,比如经过上面的2*2的池化,每一个像素对应了上一层的4个像素
  • 池化也是网络非线性的体现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值