计算机视觉工程师在面试过程中主要考察三个内容:图像处理、机器学习、深度学习。然而,各类资料纷繁复杂,或是简单的知识点罗列,或是有着详细数学推导令人望而生畏的大部头。为了督促自己学习,也为了方便后人,决心将常考必会的知识点以通俗易懂的方式设立专栏进行讲解,努力做到长期更新。此专栏不求甚解,只追求应付一般面试。希望该专栏羽翼渐丰之日,可以为大家免去寻找资料的劳累。每篇介绍一个知识点,没有先后顺序。想了解什么知识点可以私信或者评论,如果重要而且恰巧我也能学会,会尽快更新。最后,每一个知识点我会参考很多资料。考虑到简洁性,就不引用了。如有冒犯之处,联系我进行删除或者补加引用。在此先提前致歉了!
池化 pooling
卷积神经网络中的一层,池化层
最直观的作用是降低feature map的维度
两种常用池化
最大池化 max pooling
平均池化 mean pooling
最大池化选取最突出的特征,对于纹理信息敏感
平均池化关注数据整体,对背景信息敏感
最大池化用的多,两者也可以交替使用
池化的作用
- 降低feature map维度,降低参数量和计算量
- 减少了参数量通常缓解了过拟合
- 在一定程度上增强了对目标空间位置变化的鲁棒性(平移不变性)
- 增加了每个像素的感受野,比如经过上面的2*2的池化,每一个像素对应了上一层的4个像素
- 池化也是网络非线性的体现