python点云快速配准_点云配准 Registration

本文详细介绍了PCL(Point Cloud Library)中多种迭代最近点(ICP)算法变体及其应用过程,包括如何通过特征匹配和变换估计实现点云配准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCL里有很多ICP可以用

is an ICP variant that implements the generalized iterative closest point algorithm as described by Alex Segal et al.

provides a base implementation of the Iterative Closest Point algorithm.

is a special case of

IterativeClosestPoint, that uses a transformation estimated based on Point to Plane distances by default.

is an ICP variant that uses Levenberg-Marquardt optimization backend.

This class provides a way to register a stream of clouds where each cloud will be aligned to the previous cloud.

The computational steps for two datasets are straightforward:

from a set of points, identify interest points (i.e., keypoints) that best represent the scene in both datasets;

at each keypoint, compute a feature descriptor;

from the set of feature descriptors together with their XYZ positions in the two datasets, estimate a set of correspondences, based on the similarities between features and positions;

given that the data is assumed to be noisy, not all correspondences are valid, so reject those bad correspondences that contribute negatively to the registration process;

from the remaining set of good correspondences, estimate a motion transformation.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值