摘要:
where [dΣ(Q)/dΩ]RC and [dΣ(Q)/dΩ]agg are the contributions of random coils chain and of aggregated chains, respectively; Rg is the radius of giration of the random coil, P(Q) and S(Q)PY are the form factor and the structure factor of the aggregate (Triolo & Caponetti, 1990), respectively, and S(Q)ECF is the contribution due to the exponentially correlated fluctuations described in what follows (Shimizu, Kimura, Maruyama & Kurita, 1997). To compute P(Q) we tried several models and best fits were obtained with a "core+shell" polydisperse spheres model. For the structure function S(Q)PY we have used hard spheres model in the Percus-Yevick approximation (Ashcroft & Leckner, 1966). In this experiment in a few solutions we included a Lorentzian contribution S(Q)ECF(Shimizu, Kimura, Maruyama & Kurita, 1997). Statistical thermodynamics of polymer solutions in the semidilute poor solvent regime (Flory, 1953; de Gennes, 1979) suggests that the free energy density F can be simply expressed as a virial expansion in terms of binary and ternary cluster integrals (Okano, Takada, Kurita & Furusaka, 1994). From a structural point of view, a polymer in the semidilute regime shows density fluctuations correlated exponentially in space. The correlation length is a simple function of F and therefore of the cluster integrals (Okano et al, 1983-1994), and shows up in the scattering cross section of the solution as a Lorentzian contribution (Shimizu, Kimura, Maruyama & Kurita, 1997) quite similar to the Ornstein- Zernicke contributions described in different context (Triolo & Caponetti, 1990). In these preliminary fits we obtained large core radii and core scattering length density not dissimilar from the scattering length density of the pure solvent. In addition a better fit was obtained when a small fraction of the polymer was supposed to be present as unimer even at the lowest pressures. The lowest pressure presented here was at least 10 bar higher than the precipitation pressure which was obtained visually before starting the data collection.
展开