360全景拼接 opencv_使用OpenCV进行图像全景拼接

本文介绍了如何使用Python和OpenCV进行图像拼接,特别是360全景图像的创建。通过关键点检测(如SIFT、SURF)、特征匹配、RANSAC单应性估计和透视变换等步骤,将两张共享公共区域的图像缝合成全景图像。文中详细解释了每个步骤的技术细节,并展示了匹配和拼接过程的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方“ AI小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达 66ee2932aeb249c54efd223c1b906427.png

1c54d783b2a13a68588f5319f56c0656.png

图像拼接是计算机视觉中最成功的应用之一。如今,很难找到不包含此功能的手机或图像处理API。在本文中,我们将讨论如何使用Python和OpenCV进行图像拼接。也就是,给定两张共享某些公共区域的图像,目标是“缝合”它们并创建一个全景图像场景。当然也可以是给定多张图像,但是总会转换成两张共享某些公共区域图像拼接的问题,因此本文以最简单的形式进行介绍。

本文主要的知识点包含一下内容:

  • 关键点检测

  • 局部不变描述符(SIFT,SURF等)

  • 特征匹配

  • 使用RANSAC进行单应性估计

  • 透视变换

我们需要拼接的两张图像如下:

1cd99cf5752254526c6cc48ef2b3dfcc.png

特征检测与提取

给定上述一对图像,我们希望将它们缝合以创建全景场景。重要的是要注意,两个图像都需要有一些公共区域。当然,我们上面给出的两张图像时比较理想的,有时候两个图像虽然具有公共区域,但是同样还可能存在缩放、旋转、来自不同相机等因素的影响。但是无论哪种情况,我们都需要检测图像中的特征点。

关键点检测

最初的并且可能是幼稚的方法是使用诸如Harris Corners之类的算法来提取关键点。然后,我们可以尝试基于某种相似性度量(例如欧几里得距离)来匹配相应的关键点。众所周知,角点具有一个不错的特性:角点不变。这意味着,一旦检测到角点,即使旋转图像,该角点仍将存在。

但是,如果我们旋转然后缩放图像怎么办?在这种情况下,我们会很困难,因为角点的大小不变。也就是说,如果我们放大图像,先前检测到的角可能会变成一条线!

总而言之,我们需要旋转和缩放不变的特征。那就是更强大的方法(如SIFT,SURF和ORB)。

关键点和描述符

诸如SIFT和SURF之类的方法试图解决角点检测算法的局限性。通常,角点检测器算法使用固定大小的内核来检测图像上的感兴趣区域(角)。不难看出,当我们缩放图像时,该内核可能变得太小或太大。为了解决此限制,诸如SIFT之类的方法使

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值