BYOL简介

       BYOL使用了一种新的对比学习方法,即没有引入任何形式的负样本,而是用图片的编码特征(梯度更新)去预测自己的编码特征(动量更新),模型就这样训练起来了。(相当于用一个视角的特征取预测另一个视角的特征,将匹配转为预测问题

前向过程:

  • 输入x经过两次不同的Aug得到𝑣, 𝑣'  
  • 上面的online分支𝑣经过编码器𝑓𝜃得到编码特征𝑦𝜃
  • 下面的target分支𝑣,经过编码器𝑓𝜉得到编码特征𝑦𝜉'
  • 𝑓𝜃是梯度更新,𝑓𝜉𝑓𝜃模型结构一样,但用的是动量更新的方式
  • 使用类似SimCLR中一样的projection head 𝑔𝜉𝑔𝜃(也是一个MLPBYOL中也把这个结构叫predictor),将特征降到256维,得到特征𝑧𝜃 𝑧𝜉'
  • 𝑔𝜉𝑔𝜃分别是梯度更新和动量更新,但二者结构一样
  • 上分支使用prediction head(也是predictor结构)将𝑧𝜃映射为𝑞𝜃(𝑧𝜃),然后用𝑞𝜃(𝑧𝜃), 去预测𝑠𝑔(𝑧𝜉'来进行对比学习,其中sg表示stop-gradient
  • 损失函数是MSELoss,即直接计算预测特征𝑞𝜃(𝑧𝜃)和标签𝑠𝑔(𝑧𝜉')这两个向量之间的mse

推理:

        当训练完成只留下编码器𝑓𝜃,剩下所有的东西都被拿掉了。然后用这个编码器编码图片,输出维特征去做下游任务的推理。

03-18
### BYOL(Bring Your Own License)概述 BYOL 是一种软件许可模式,允许客户将其现有的软件许可证带到基于云的服务或其他托管环境中使用。这种模型通常用于企业级应用程序和服务提供商场景中,使客户能够灵活地管理其软件资产并减少重复购买的成本。 在实际实施过程中,BYOL 的核心在于分离计算资源的提供与软件授权的管理。这意味着服务供应商负责提供基础设施(如虚拟机、存储等),而客户则需自行管理和验证其拥有的合法软件许可证[^1]。 #### 技术实现的关键要素 为了成功部署和支持 BYOL 模型,以下是几个重要的技术方面: 1. **许可证跟踪和验证** 客户端需要具备有效的机制来追踪已购入的许可证状态,并确保这些许可证可以被正确识别和激活于目标环境之中。这可能涉及复杂的 API 集成或者专用工具的支持[^2]。 2. **自动化配置流程** 自动化脚本可以帮助简化从本地到云端迁移的过程以及初始设置阶段的工作量。例如,在 Linux 平台上可以通过 shell 脚本来完成依赖项安装之后再拉取特定仓库中的源码文件进行编译构建等工作流操作. 3. **安全性考量** 当涉及到敏感数据处理时(比如金融行业), 加密传输协议 (TLS/SSL) 和访问控制列表(Access Control Lists, ACLs) 应该成为标准实践的一部分以保护信息不被未授权方获取. 4. **计费透明度** 对于采用按需付费模式的服务商来说,清晰定义哪些费用属于基础架构层面收费项目 versus 基于消耗情况调整后的最终账单金额至关重要;这样有助于消除潜在误解同时也促进了长期合作关系的发展[^3]. ```bash #!/bin/bash # Example script to setup environment with custom license handling. apt-get update && apt-get install -y git python-pip # Install necessary packages first. git clone https://github.com/example-repo.git ~/workspace # Clone target repo into user space. cd ~/workspace && pip install -r requirements.txt # Setup Python dependencies as per project needs. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值