前文说到K—均值聚类分析,该篇介绍系统聚类法
系统聚类法常称为层次聚类法、分层聚类法,也是聚类分析中使用广泛的一种方法。它有两种类型,一是对研究对象的本身进行分类,称为Q型聚类;另一是对研究对象的观察指标进行分类,称为R型聚类。同时根据聚类过程不同,又分为分解法和凝聚法。
特点:
- 样本和变量都可以聚类,变量可以为连续或分类变量(变量虽然可以为连续型或者分类型,但是不能混用,要不就是全分类这样使用,要不就全连续变量聚类)
- 不局限于参数选择,将所有观测指标纳入系统,结果形成树形图,适用于样本大时,但计算慢。
- 一旦记录/变量被划定类别,其分类结果就不会再进行更改
- 提供的距离测量方法非常丰富
- 运算速度较慢
问题描述:
现有数据文件《某市中学评审数据》,存储着评审专家从8个方面对40所学校的评价数据。请根据评审数据,对学校的8个评价指标项进行聚类(R聚类)。

