python predict_proba_scikit-学习LogisticRegression.predict_proba的返回值 - python

本文探讨了在Python的scikit-learn库中,LogisticRegression模型的predict_proba函数的输出含义。内容解释了第一列实际上是负类(-1)的概率,而第二列是正类(+1)的概率,并提供了如何仅提取正类概率的代码示例。同时,文章提到了其他与scikit-learn相关的主题,如Kriging插值、KNeighborsClassifier的行为以及如何在不使用正则化的情况下执行逻辑回归。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LogisticRegression.predict_proba函数究竟返回什么?

在我的示例中,我得到这样的结果:

[[ 4.65761066e-03 9.95342389e-01]

[ 9.75851270e-01 2.41487300e-02]

[ 9.99983374e-01 1.66258341e-05]]

根据其他计算,使用S形函数,我知道第二列是概率。 documentation说,第一列是n_samples,但是不能,因为我的示例是评论,是文本而不是数字。该文档还说,第二列是n_classes。那肯定不是,因为我只有两个类(即+1和-1),并且该函数应该用于计算实际上属于某个类的样本的概率,而不是有关类本身的概率。

第一列到底是什么?为什么在那?

参考方案

4.65761066e-03 + 9.95342389e-01 = 1

9.75851270e-01 + 2.41487300e-02 = 1

9.99983374e-01 + 1.66258341e-05 = 1

第一列是条目具有-1标签的概率,第二列是条目具有+1标签的概率。请注意,类的顺序与self.classes_中的顺序相同。

如果您只想获取肯定标签的预测概率,则可以使用logistic_model.predict_proba(data)[:,1]。这将产生[9.95342389e-01, 2.41487300e-02, 1.66258341e-05]结果。

Python-scikit_learn中的克里金(高斯过程) - python

我正在考虑使用此方法对我拥有的3D点进行插值。作为输入,我在一个区域中的各个高度具有大气浓度的气体。我所获得的数据显示为垂直高度每隔几英尺延伸几十英尺,但水平分开数百英尺的值(因此,“列”紧密堆积)。假定在任何给定时间点,值在垂直方向上的变化比在水平方向上的变化大得多。我想在考虑到这一假设的情况下执行3D克里金法(作为我可以调整的参数,或者是经过统计定义的参…scik

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值