stata F值缺失_STATA数据处理技巧与计量分析十|面板回归分析(上)

本文介绍了STATA面板回归分析的相关知识。先阐述了面板数据的分类、优点及个体效应模型,包括固定效应和随机效应模型。接着讲解了面板数据的几种处理方法,如混合回归、个体固定效应模型、时间固定效应、一阶差分法、随机效应模型等,并说明了各自的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4a426e010d2ecbee1837412c6395a18a.gif

更多精彩请关注211统计课堂

上期小统和大家一起了解了STATA数据处理技巧与计量分析中的时间序列分析知识,这期小统和大家学习一下关于面板回归分析的知识点。

01

什么是面板数据?

1ce41e7456dbd864193668e2aeb5ef42.png

1551e91e05c6a344e5bcdb504ce005cd.png

面板数据的分类:

  • 长面板 VS 短面板

  • 静态面板 VS 动态面板

  • 平衡面板 VS 非平衡面板

面板数据优点:

  • 可以解决遗漏变量问题(一般是由于不可观测的个体差异或“异质性”造成)

  • 提供更多个体动态行为的信息。

  • 样本容量较大,可以提高估计的精确度。

个体效应模型:

对于面板数据,我们有两种极端的数据处理方式:

第一种:忽略个体之间的差异,当成是横截面数据,采用OLS估计。

第二种:忽略个体之间的联系,对每一个个体的时间序列数据进行OLS估计。

9940908e6b68c12841f2052537f867ea.png

其中,4b683ca3985fe9996e35e11537554c6b.png是不随时间而变的个体特征,如性别;a2ffbc94978d1785ed30a3b6b648d524.png可以随个体及时间而变。扰动项由93b7726e8fdf9cec1904973ab9413931.png两部分构成,称为“复合扰动项”,因此上述模型也称为“复合扰动项模型”。其中,不可观测的随机变量e06acab134d32d3e85350ab67c20e107.png是代表个体异质性的截距项,因此,也可以称为“不可观测效应模型”。

如果个体效应与某个解释变量相关,则称为“固定效应模型”(Fixed effects model,FE);如果个体效应与x和z均不相关,则称为“随机效应模型”(Random effects model,RE)

02

面板数据的几种处理

混合回归

0b05f15dde5de93ad43894abc636ef96.png

Pooled regression. 简单说,就是忽略面板数据的特点,当成是横截面数据一样采用OLS进行估计,认为不同个体之间的截距无差异。

注意事项:

  • 面板数据,可以假设不同个体之间扰动项相互独立,但是时间上的扰动项往往存在自相关。——采用聚类稳健标准误。(同一聚类观测值允许存在相关性,而不同聚类则不存在相关性)

  • 混合回归的基本假设是“不存在个体效应”。因此需要进行相关的检验,如FE中的F检验(stata输出结果的底部)。

个体固定效应模型

0f42c214ba87d49458611e8a9d990863.png

对时间进行平均(每个个体单独进行)

6a3f5d35865e7a8bb1caf44c1b0372f3.png

减去原模型,得到离差形式

d82d249a5100ad851c01c4978feee3fa.png

用新符号表示上述离差形式。可以用OLS进行估计。但是,个体效应没有了,同时反映个体特征的z变量也没有了!

去中心化!

消除个体观测效应和某个解释变量之间的相关性,则可以使用OLS进行估计。

注意事项:

优势:2b2c2d9880aefcd43892fd0efb02e4e9.png也称为“固定效应估计量”e859f01f1b3bb952b40f4bd779600b61.png,或者组内估计量。即使个体效应和解释变量相关,但只需要使用组内估计量,就可以得到一致性统计。

劣势:无法估计不随时间变化的个体特征,比如性别等。

最小二乘虚拟变量模型LSDV:FE估计量相当于OLS+个体虚拟变量。(线性模型和离差形式的一致性)

时间固定效应

e9ed0f8e2600aa7e66c727bd2b582572.png

类似于个体固定效应的LSDV,可以添加时间变量的虚拟变量到模型中,即为时间固定效应模型。

一阶差分法

d363c496a1daaa3ddd505fa10d400ae4.png

通过减去滞后项达到消除个体效应的目的!

  • 当T=2时,af4d30610a6df1087a5cbae1446b95ab.png

  • 当T>2时,组内估计量一般比一阶差分估计量更有效率,因此实践中,常用FE而少用FD。

注意事项

优势:动态模型中,由于严格外生性假定无法满足,故会采用差分法。

随机效应模型

9940908e6b68c12841f2052537f867ea.png

如果个体效应和解释变量不相关,则OLS是一致的,这个时候就可以采用随机效应模型进行估计。(大部分情况还是需要使用固定效应模型,因为假设很难满足)

组间估计量

8a52658f01ad2a7d68fa9e9bffb0d0e5.png

对个体求时间的均值

组内估计量FE和组间估计量BE

(很少用!)因为在随机模型下,对个体进行平均值处理,损失较大信息量。

注意事项:仅反映了个体之间的差异,因此称为组间估计量。

e59844ac74f13d2f729520776f3aec4f.png

喜欢就点个在看吧

c5101e131cd1ce0807d64f4a26af8af6.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值