


对于节点周围分支的方向,大多数层次聚类方法中都可以任意调整顺序;少数方法如TWINSPAN,对象的排列顺序和其分类特征密切相关,分支方向不可随意调整。

在前文简介层次聚合分类时,已经在R中展示了聚类树的一些简单调整方法,本篇继续作为延伸,展示一些更详细的可视化方案。
示例数据和R代码的百度盘链接:
https://pan.baidu.com/s/1ysLxEr4kOP8kEAg8HdPYEg
层次聚类
示例数据为来自16S测序所得的15个样本的细菌OTU丰度表,首先执行层次聚类识别样本归类。
#读取 OTU 丰度表
dat dat
#样本分组文件
group
#计算样本间距离,以群落分析中常用的 Bray-curtis 距离为例
dis_bray
#层次聚类,以 UPGMA 为例
upgma upgma
plot(upgma, main = 'UPGMA\n(Bray-curtis distance)', sub = '', xlab = 'Sample', ylab = 'Height')
接下来,展示一些可能用到的聚类树调整方案。
注:下文所展示的方法仅为树状图本身的调整。其它组合类型的样式,如聚类树+柱形图、聚类树+热图、聚类树+排序图等,将放在后续的教程中绘制。
直接在plot()作图时添加参数调整
基本的参数调整已在层次聚合分类时提到,以下是继续延伸的内容。
#将样本高度保持在同一水平,以下两种方法都可以
par(mfrow = c(1, 2))
plot(upgma, hang = -1, main = 'UPGMA\n(Bray-curtis distance)', sub = '',&nb