r语言 col_R语言绘制聚类树示例

本文介绍如何在R语言中绘制层次聚类树,并提供了多种调整和可视化的方案。通过示例数据展示了从16S测序得到的细菌OTU丰度表的样本归类,探讨了聚类树的调整方法,包括ape包中的系统发育树风格、sparcl包和A2R包的可视化功能,以及如何给分支标记颜色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a47907103bcff74ddb0ef4b5bc2d5b95.png R语言绘制聚类树示例 fccc4953b9aeaeb753bb5e80e9287f4f.png层次聚类(hierarchical clustering)常见两种形式,“自底向上”的聚合策略(层次聚合)或“自顶向下”的分拆策略(层次分划),结果一般以聚类树表示,它表示将对象或聚类群连接在一起的层次结构。在聚类树中,分支的高度代表了距离的远近。 48aecb4663ce9b9bdd78a2989f6d2e61.png

对于节点周围分支的方向,大多数层次聚类方法中都可以任意调整顺序;少数方法如TWINSPAN,对象的排列顺序和其分类特征密切相关,分支方向不可随意调整。

fe2707808561a4ff4160f50e2621de5e.png

在前文简介层次聚合分类时,已经在R中展示了聚类树的一些简单调整方法,本篇继续作为延伸,展示一些更详细的可视化方案。

示例数据和R代码的百度盘链接:

https://pan.baidu.com/s/1ysLxEr4kOP8kEAg8HdPYEg

 

层次聚类

示例数据为来自16S测序所得的15个样本的细菌OTU丰度表,首先执行层次聚类识别样本归类。

#读取 OTU 丰度表
dat dat  
#样本分组文件
group  
#计算样本间距离,以群落分析中常用的 Bray-curtis 距离为例
dis_bray  
#层次聚类,以 UPGMA 为例
upgma upgma
plot(upgma, main = 'UPGMA\n(Bray-curtis distance)', sub = '', xlab = 'Sample', ylab = 'Height')

0f5014797a23b3c18fea21671806a805.png

接下来,展示一些可能用到的聚类树调整方案。

注:下文所展示的方法仅为树状图本身的调整。其它组合类型的样式,如聚类树+柱形图、聚类树+热图、聚类树+排序图等,将放在后续的教程中绘制。

 

直接在plot()作图时添加参数调整

基本的参数调整已在层次聚合分类时提到,以下是继续延伸的内容。

#将样本高度保持在同一水平,以下两种方法都可以
par(mfrow = c(1, 2))
plot(upgma, hang = -1, main = 'UPGMA\n(Bray-curtis distance)', sub = '',&nb
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值