
在机器学习的建模工作中,首先会将数据集分为训练集和测试集,在训练集上对模型进行训练以及参数的调优,在测试集上对模型进行评估,但是测试集的选择会对模型的效果产生影响,在随机切分训练集/测试集的情况下,可能刚好选择了比较容易预测的数据点作为测试集,所以采用交叉验证(cross validation)的方式,通过获取模型在多个测试集上的平均效果来总体评估模型的效果。
而交叉验证中常用的方法K折交叉检验法(k-fold cross validation)用于模型调优,可以缓解过拟合现象的产生,具体实现方法:
将样本数据集分为k组大小相似的互斥子集,每次抽取出k份中的一份作为测试集,剩下来的k-1份作为训练集,尽量保证每个子集数据分布的一致性。依次得到测试结果S1,S2,...,Sk,然后求其平均值得到模型在多个测试集上的平均效果,用求得的平均值评估模型的总体效果。

(图中红色的部分为每次从样本数据集中抽取出来作为测试集的部分。)
import

第一步是导入模块和加载数据。
# 测试集和训练集的拆分
# 将输入模型的特征x和目标属性Y切分出来
X = df1.iloc[:,2:4]
Y = df1.iloc[:,5]
#数据分为 训练集 和 测试集
kf = KFold(n_splits = 10)
for train,valid in kf.split(X):
print("train:%s,valid:%s"%(train,valid))

这里K = 10,由此获取到了10组训练集+测试集,大大缓解了过拟合现象的产生。