神经网络python实例分类_利用TensorFlow训练简单的二分类神经网络模型的方法

本文介绍了如何利用TensorFlow搭建神经网络,对《神经网络与机器学习》一书中4.7节的双月牙数据集进行分类。首先通过python产生双月牙数据,然后构建包含隐藏层和输出层的神经网络模型,选择双曲正切函数作为激活函数,并使用梯度下降优化器进行训练。最后,通过采样和拟合找到分类决策边界并进行可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用TensorFlow实现《神经网络与机器学习》一书中4.7模式分类练习

具体问题是将如下图所示双月牙数据集分类。

201803050927025.png

使用到的工具:

python3.5 tensorflow1.2.1 numpy matplotlib

1.产生双月环数据集

def produceData(r,w,d,num):

r1 = r-w/2

r2 = r+w/2

#上半圆

theta1 = np.random.uniform(0, np.pi ,num)

X_Col1 = np.random.uniform( r1*np.cos(theta1),r2*np.cos(theta1),num)[:, np.newaxis]

X_Row1 = np.random.uniform(r1*np.sin(theta1),r2*np.sin(theta1),num)[:, np.newaxis]

Y_label1 = np.ones(num) #类别标签为1

#下半圆

theta2 = np.random.uniform(-np.pi, 0 ,num)

X_Col2 = (np.random.uniform( r1*np.cos(theta2),r2*np.cos(theta2),num) + r)[:, np.newaxis]

X_Row2 = (np.random.uniform(r1 * np.sin(theta2), r2 * np.sin(theta2), num) -d)[:,np.newaxis]

Y_label2 = -np.ones(num) #类别标签为-1,注意:由于采取双曲正切函数作为激活函数,类别标签不能为0

#合并

X_Col = np.vstack((X_Col1, X_Col2))

X_Row = np.vstack((X_Row1, X_Row2))

X = np.hstack((X_Col, X_Row))

Y_label = np.hstack((Y_label1,Y_label2))

Y_label.shape = (num*2 , 1)

return X,Y_label

其中r为月环半径,w为月环宽度,d为上下月环距离(与书中一致)

2.利用TensorFlow搭建神经网络模型

2.1 神经网络层添加

def add_layer(layername,inputs, in_size, out_size, activation_function=None):

# add one more layer and return the output of this layer

with tf.variable_scope(layername,reuse=None):

Weights = tf.get_variable("weights",shape=[in_size, out_size],

initializer=tf.truncated_normal_initializer(stddev=0.1))

biases = tf.get_variable("biases", shape=[1, out_size],

initializer=tf.truncated_normal_initializer(stddev=0.1))

Wx_plus_b = tf.matmul(inputs, Weights) + biases

if activation_function is None:

outputs = Wx_plus_b

else:

outputs = activation_function(Wx_plus_b)

return outputs

2.2 利用tensorflow建立神经网络模型

输入层大小:2

隐藏层大小:20

输出层大小:1

激活函数:双曲正切函数

学习率:0.1(与书中略有不同)

(具体的搭建过程可参考莫烦的视频,链接就不附上了自行搜索吧......)

###define placeholder for inputs to network

xs = tf.placeholder(tf.float32, [None, 2])

ys = tf.placeholder(tf.float32, [None, 1])

###添加隐藏层

l1 = add_layer("layer1",xs, 2, 20, activation_function=tf.tanh)

###添加输出层

prediction = add_layer("layer2",l1, 20, 1, activation_function=tf.tanh)

###MSE 均方误差

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))

###优化器选取 学习率设置 此处学习率置为0.1

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

###tensorflow变量初始化,打开会话

init = tf.global_variables_initializer()#tensorflow更新后初始化所有变量不再用tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

2.3 训练模型

###训练2000次

for i in range(2000):

sess.run(train_step, feed_dict={xs: x_data, ys: y_label})

3.利用训练好的网络模型寻找分类决策边界

3.1 产生二维空间随机点

def produce_random_data(r,w,d,num):

X1 = np.random.uniform(-r-w/2,2*r+w/2, num)

X2 = np.random.uniform(-r - w / 2-d, r+w/2, num)

X = np.vstack((X1, X2))

return X.transpose()

3.2 用训练好的模型采集决策边界附近的点

向网络输入一个二维空间随机点,计算输出值大于-0.5小于0.5即认为该点落在决策边界附近(双曲正切函数)

def collect_boundary_data(v_xs):

global prediction

X = np.empty([1,2])

X = list()

for i in range(len(v_xs)):

x_input = v_xs[i]

x_input.shape = [1,2]

y_pre = sess.run(prediction, feed_dict={xs: x_input})

if abs(y_pre - 0) < 0.5:

X.append(v_xs[i])

return np.array(X)

3.3 用numpy工具将采集到的边界附近点拟合成决策边界曲线,用matplotlib.pyplot画图

###产生空间随机数据

X_NUM = produce_random_data(10, 6, -4, 5000)

###边界数据采样

X_b = collect_boundary_data(X_NUM)

###画出数据

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

###设置坐标轴名称

plt.xlabel('x1')

plt.ylabel('x2')

ax.scatter(x_data[:, 0], x_data[:, 1], marker='x')

###用采样的边界数据拟合边界曲线 7次曲线最佳

z1 = np.polyfit(X_b[:, 0], X_b[:, 1], 7)

p1 = np.poly1d(z1)

x = X_b[:, 0]

x.sort()

yvals = p1(x)

plt.plot(x, yvals, 'r', label='boundray line')

plt.legend(loc=4)

#plt.ion()

plt.show()

4.效果

201803050927026.png

5.附上源码Github链接

另注:分类问题还是用softmax去做吧.....我只是用这做书上的练习而已。

(初学者水平有限,有问题请指出,各位大佬轻喷)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值