【Pandas】pandas Index objects CategoricalIndex.reorder_categories

Pandas2.2 Index objects

Categorical components

方法描述
CategoricalIndex.codes用于获取分类索引中每个元素对应的整数代码
CategoricalIndex.categories用于获取分类索引中的所有类别(categories)
CategoricalIndex.ordered用于指示分类索引中的类别是否具有有序关系
CategoricalIndex.rename_categories(*args, …)用于重命名分类索引中的类别
CategoricalIndex.reorder_categories(*args, …)用于重新排列分类索引中的类别顺序

pandas.CategoricalIndex.reorder_categories

pandas.CategoricalIndex.reorder_categories 是 [CategoricalIndex] 对象的一个方法,用于重新排列分类索引中的类别顺序。这个方法允许我们更改 [CategoricalIndex] 中类别的顺序,而不改变数据本身。

详细说明
  • 用途:重新排列 [CategoricalIndex] 中的类别顺序
  • 参数
    • new_categories:新的类别顺序,必须包含所有现有类别
    • [ordered](可选):是否将结果设为有序分类,默认为 None(保持当前状态)
    • inplace(可选,关键字参数):是否就地修改,默认为 False
  • 返回值
    • 如果 inplace=False(默认),返回一个新的 [CategoricalIndex] 对象
    • 如果 inplace=True,就地修改并返回 None
示例代码及结果
示例 1: 基本用法 - 重新排列类别顺序
import pandas as pd

# 创建一个有序 CategoricalIndex
cat_index = pd.CategoricalIndex(['small', 'large', 'medium', 'small'], 
                               categories=['small', 'medium', 'large'], 
                               ordered=True)
print("原始 CategoricalIndex:")
print(cat_index)
print("原始类别顺序:")
print(cat_index.categories)

# 重新排列类别顺序
reordered_cat_index = cat_index.reorder_categories(['large', 'medium', 'small'])
print("\n重新排列后的 CategoricalIndex:")
print(reordered_cat_index)
print("新类别顺序:")
print(reordered_cat_index.categories)
print("是否有序:", reordered_cat_index.ordered)

输出结果:

原始 CategoricalIndex:
CategoricalIndex(['small', 'large', 'medium', 'small'], categories=['small', 'medium', 'large'], ordered=True, dtype='category')
原始类别顺序:
Index(['small', 'medium', 'large'], dtype='object')

重新排列后的 CategoricalIndex:
CategoricalIndex(['small', 'large', 'medium', 'small'], categories=['large', 'medium', 'small'], ordered=True, dtype='category')
新类别顺序:
Index(['large', 'medium', 'small'], dtype='object')
是否有序: True
示例 2: 更改有序性
import pandas as pd

# 创建一个无序 CategoricalIndex
cat_index = pd.CategoricalIndex(['low', 'high', 'medium', 'low'], 
                               categories=['low', 'medium', 'high'], 
                               ordered=False)
print("原始 CategoricalIndex:")
print(cat_index)
print("是否有序:", cat_index.ordered)

# 重新排列类别并设为有序
ordered_cat_index = cat_index.reorder_categories(['low', 'medium', 'high'], ordered=True)
print("\n重新排列并设为有序后:")
print(ordered_cat_index)
print("是否有序:", ordered_cat_index.ordered)

输出结果:

原始 CategoricalIndex:
CategoricalIndex(['low', 'high', 'medium', 'low'], categories=['low', 'medium', 'high'], ordered=False, dtype='category')
是否有序: False

重新排列并设为有序后:
CategoricalIndex(['low', 'high', 'medium', 'low'], categories=['low', 'medium', 'high'], ordered=True, dtype='category')
是否有序: True
示例 3: 在排序中的应用
import pandas as pd

# 创建一个有序 CategoricalIndex
cat_index = pd.CategoricalIndex(['beginner', 'expert', 'intermediate', 'beginner', 'expert'], 
                               categories=['beginner', 'intermediate', 'expert'], 
                               ordered=True)
print("原始 CategoricalIndex:")
print(cat_index)

# 按不同顺序重新排列类别
reordered_cat = cat_index.reorder_categories(['expert', 'intermediate', 'beginner'])
print("\n重新排列类别后的 CategoricalIndex:")
print(reordered_cat)

# 排序效果会根据新的类别顺序变化
print("\n排序结果:")
print(reordered_cat.sort_values())

输出结果:

原始 CategoricalIndex:
CategoricalIndex(['beginner', 'expert', 'intermediate', 'beginner', 'expert'], categories=['beginner', 'intermediate', 'expert'], ordered=True, dtype='category')

重新排列类别后的 CategoricalIndex:
CategoricalIndex(['beginner', 'expert', 'intermediate', 'beginner', 'expert'], categories=['expert', 'intermediate', 'beginner'], ordered=True, dtype='category')

排序结果:
CategoricalIndex(['expert', 'expert', 'intermediate', 'beginner', 'beginner'], categories=['expert', 'intermediate', 'beginner'], ordered=True, dtype='category')
示例 4: 错误处理 - 类别不匹配
import pandas as pd

# 创建一个 CategoricalIndex
cat_index = pd.CategoricalIndex(['red', 'blue', 'green'], 
                               categories=['red', 'blue', 'green'])
print("原始 CategoricalIndex:")
print(cat_index)

# 尝试使用不完整的类别列表(会抛出异常)
try:
    incomplete_reorder = cat_index.reorder_categories(['red', 'blue'])  # 缺少 'green'
    print(incomplete_reorder)
except ValueError as e:
    print(f"\n错误: {e}")

# 尝试使用额外的类别(会抛出异常)
try:
    extra_reorder = cat_index.reorder_categories(['red', 'blue', 'green', 'yellow'])  # 多出 'yellow'
    print(extra_reorder)
except ValueError as e:
    print(f"\n错误: {e}")

# 正确的重新排列
correct_reorder = cat_index.reorder_categories(['green', 'blue', 'red'])
print("\n正确的重新排列结果:")
print(correct_reorder)

输出结果:

原始 CategoricalIndex:
CategoricalIndex(['red', 'blue', 'green'], categories=['red', 'blue', 'green'], ordered=False, dtype='category')

错误: items in new_categories are not the same as in old categories

错误: items in new_categories are not the same as in old categories

正确的重新排列结果:
CategoricalIndex(['red', 'blue', 'green'], categories=['green', 'blue', 'red'], ordered=False, dtype='category')
示例 5: 重新排列对数据值的影响
import pandas as pd

# 创建一个 CategoricalIndex
cat_index = pd.CategoricalIndex(['low', 'medium', 'high', 'low', 'medium'], 
                               categories=['low', 'medium', 'high'])
print("原始 CategoricalIndex:")
print(cat_index)
print("值计数:")
print(cat_index.value_counts())

# 重新排列类别顺序
reordered_cat = cat_index.reorder_categories(['high', 'medium', 'low'])
print("\n重新排列类别后的 CategoricalIndex:")
print(reordered_cat)
print("值计数:")
print(reordered_cat.value_counts())

# 注意:数据值本身不变,但类别顺序改变了
print("\n两个索引是否相等:", cat_index.equals(reordered_cat))

输出结果:

原始 CategoricalIndex:
CategoricalIndex(['low', 'medium', 'high', 'low', 'medium'], categories=['low', 'medium', 'high'], ordered=False, dtype='category')
值计数:
low       2
medium    2
high      1
dtype: int64

重新排列类别后的 CategoricalIndex:
CategoricalIndex(['low', 'medium', 'high', 'low', 'medium'], categories=['high', 'medium', 'low'], ordered=False, dtype='category')
值计数:
low       2
medium    2
high      1
dtype: int64

两个索引是否相等: False
应用场景
  1. 数据可视化:调整类别顺序以改善图表的可读性
  2. 排序操作:改变排序时的优先级顺序
  3. 数据展示:按照特定逻辑顺序展示分类数据
  4. 分析需求:根据分析需要调整类别的重要性顺序
  5. 报告生成:在报表中按特定顺序展示分类信息
注意事项
  • 新的类别列表必须包含所有原始类别,不能多也不能少
  • 重新排列类别不会改变数据中的实际值
  • 如果使用 inplace=True,原对象会被修改且方法返回 None
  • 可以同时更改类别顺序和有序性
  • 对于有序分类,类别顺序会影响排序和比较操作的结果
  • 重新排列类别后,两个对象在逻辑上可能不相等,即使包含相同的数据

通过 reorder_categories 方法,我们可以灵活地调整 [CategoricalIndex] 中的类别顺序,这对于数据分析和展示非常有用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值