
欢迎关注公众号:编程外星人,加入技术交流群
卡尔曼滤波在无人机导航和控制系统中起着至关重要的作用。由于很多传感器的读数并不是十分准确,而且噪声很大,无人机的控制模型的不确定性,在许多情况下传感器的不确定性可以假设其噪声误差满足高斯分布。卡尔曼滤波器是通过不断对上一时刻的状态进行迭代,得出当前时刻的状态,其在更新迭代过程中用到了5个重要的公式:

其中,X ̂_t为状态预测;F_t为状态转换矩阵;P_t为预测值协方差;R_t为测量噪声;H_t为观测矩阵;Q_t为系统噪声;K为卡尔曼增益;Z_t为系统测量;P_t^'为状态值协方差。
由:

设x和y符合高斯分布,于是有x和y的联合分布:

根据高斯特性有:

求x,y分布:

其中:

先求x:

其中:

再求y:

其中:

于是,求期望:

方差:

对(9)式子中等号右边矩阵的每一项进行计算:
1)左上:

2)右下

3)左下

4)右上

接下来计算(6)中的期望:

得到的结果就是公式(4),而且式中的K就是公式(3),即卡尔曼增益。再来计算(6)中的方差:

得到的式子就是公式(5)。再由公式(7)得出(1)。由:

得到式子(10)就是公式(2)。到此,卡尔曼滤波的5个重要公式推导完毕。
欢迎关注公众号:编程外星人,加入技术交流群