均匀分布的期望和方差的推导_一天精通无人机第 43 讲 高级篇系列:卡尔曼滤波5个重要公式的推导...

本文详细解析了卡尔曼滤波在无人机导航中的应用,涉及状态预测、协方差更新等五个核心公式,展示了如何处理高斯噪声和不确定性。通过计算步骤演示了如何从高斯分布出发推导滤波器参数。加入编程外星人,深入理解技术细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

479622fc80f803062f3ab1dd90a92ede.png

欢迎关注公众号:编程外星人,加入技术交流群

卡尔曼滤波在无人机导航和控制系统中起着至关重要的作用。由于很多传感器的读数并不是十分准确,而且噪声很大,无人机的控制模型的不确定性,在许多情况下传感器的不确定性可以假设其噪声误差满足高斯分布。卡尔曼滤波器是通过不断对上一时刻的状态进行迭代,得出当前时刻的状态,其在更新迭代过程中用到了5个重要的公式:

cdd68a16314752507d6e669e8aa3908d.png

其中,X ̂_t为状态预测;F_t为状态转换矩阵;P_t为预测值协方差;R_t为测量噪声;H_t为观测矩阵;Q_t为系统噪声;K为卡尔曼增益;Z_t为系统测量;P_t^'为状态值协方差。
由:

663585d35eb83587c9327792a6c11b0d.png

设x和y符合高斯分布,于是有x和y的联合分布:

1cbc5749e77d78382ae7e924ac2ee24a.png

根据高斯特性有:

0212fe75be66718621b11e7dd3c6fdf0.png

求x,y分布:

4383720adff94ba8d090f51008e6b9e9.png

其中:

f02a8861c1b3924c773d53b928e53a2b.png

先求x:

08459faf4756c4aaa8c5e6e16887f1d0.png

其中:

3332231d1b47ab150c9d2899b356fe8e.png

再求y:

93b95a938b6eaa51ed913c296de534e4.png

其中:

c9b8ba5e4ba0b7556b9e19ea238e419c.png

于是,求期望:

dd7cfe6cef305fb3ca4dff8fd41d4e32.png

方差:

2b9ce3142ecc7235d66e19a4d99b6840.png

对(9)式子中等号右边矩阵的每一项进行计算:
1)左上:

1320d97882b0d006b58461251fbd31e1.png

2)右下

2f66c9488dd1b8e9ac0a361ded319931.png

3)左下

8c2c7d02fbeeee37491460b23aef04a5.png

4)右上

d0ffb82d6696fe4d0bf00f3b5a6a5829.png

接下来计算(6)中的期望:

2f79a8449baa8fa61abd42c6dfc4a67b.png

得到的结果就是公式(4),而且式中的K就是公式(3),即卡尔曼增益。再来计算(6)中的方差:

3e695938e5fabbf0e27992730b2cd337.png

得到的式子就是公式(5)。再由公式(7)得出(1)。由:

5f9bb40b2a148445de998310e14ebb8f.png

得到式子(10)就是公式(2)。到此,卡尔曼滤波的5个重要公式推导完毕。

欢迎关注公众号:编程外星人,加入技术交流群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值