python逻辑回归模型建模步骤_逻辑回归建模及变量重要性可视化(Python实现)

本文介绍了如何使用Python进行逻辑回归模型建模,并重点分享了如何通过可视化展示模型变量的重要性。通过实例展示了三种不同的条形图方法,包括简单排序、竖直柱形图和水平柱形图,以直观呈现变量系数对模型的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、逻辑回归背景知识

逻辑回归(Logistic Regression)是最常用的分类算法之一,因其简单直观可解释而广受欢迎。它来源于统计学中的广义线性模型(GLM),也是机器学习领域的基本算法。

因本文重在分享对模型变量重要性的可视化,故在这里不对模型原理做过多说明。感兴趣的读者可以参考以下几篇文章。

简单地说,逻辑回归模型的变量系数,反映变量变动对比值比y/1-y(odd)的影响,即对样本X作为正例的相对可能性的影响。

这里我们先建立模型,输出系数,供后面可视化使用。

#=============== 逻辑回归 =================

#加载包

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

#数据读入

filename='loandata.xls'

data=pd.read_excel(filename)

data.head()

#数据准备

X_data = data.drop(['违约'],axis=1)

print(X_data.head())

y_data = np.ravel(data[['违约']])

#划分数据集

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(X_data,y_data,random_state=1)

X_train.shape

X_test.shape

#建立模型

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值