
内容无关:最近的课题内容和机器人运动规划方法有关,我把学习的内容整理成为工具箱上传到了我的github仓库,稍后将会发一篇说明介绍使用方法。
XM522706601/robotics_tutorial_for_zhihugithub.com
上一篇文章 小明工坊:【基础知识】机器人运动规划原理与实现(一)——概率路线图(PRM)方法 我们讲到了机器人运动规划中一个比较重要的方法——概率路线图(PRM)方法,并通过编程进行了演示和分析,下面简单回顾如下:
- 机器人运动规划的基本任务为从开始位置运动到目标位置
- 主要难点有二:躲避障碍物(全局约束)和满足自身运动性能(微分约束)
- 抽样规划是解决全局约束问题的重要方法
- 抽样规划算法分为综合查询方法和单一查询方法
- 综合查询方法的代表为概率路线图算法(PRM),单一查询方法的代表为快速扩展随机树算法(RRT)
本章我们同样用一个例子来讲解快速扩展随机树算法(RRT)算法。
其实RRT算法与PRM算法十分类似,都是通过抽样来在已知的地图上建立无向图,进而通过搜索方法寻找相对最优的路径。不同点在于,PR