pointnet分割自己的点云数据_三维点云分类与分割-PointNet++

本文深入探讨PointNet存在的问题,即忽视局部信息,以及作者提出的改进方案PointNet++。PointNet++通过分层设置采样、分组和特征提取层,解决点云局部特征提取。同时,针对点云分布不均问题,提出多尺度分组(MSG)和多分辨率分组(MRG)策略。实验结果显示,这些改进在处理稀疏点云时提高了模型的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一, PointNet存在的问题和作者的改进

pointnet只是简单的将所有点连接起来,只考虑了全局特征,但丢失了每个点的局部信息,如下图(以点云分割为例):

3db2cbad7d3c87968d9f6f8c1f7a5113.png

改进方法:

1)利用空间距离(metric space distances),使用PointNet对点集局部区域进行特征迭代提取,使其能够学到局部尺度越来越大的特征。

2)由于点集分布很多时候是不均匀的,如果默认是均匀的,会使得网络性能变差,所以作者提出了一种自适应密度的特征提取方法

二.网络结构:

3e02c9c9733c885a92ed7d63ecf3dbe6.png

2.1 针对局部特征提取的设计思路:

PointNet++需要解决两个关键的问题:第一,如何将点集划分为不同的区域;第二,如何利用特征提取器获取不同区域的局部特征。pointnet++使用了分层抽取特征的思想,把每一次叫做set abstraction。分为三部分:采样层、分组层、特征提取层。 其中采样层和分组层解决第一个问题, 特征提取层解决第二个问题

1). 采样层(Sample layer)

首先来看采样层,为了从稠密的点云中抽取出一些相对较为重要的中心点,采用FPS(farthest point sampling)最远点采样法,这些点并不一定具有语义信息。当然也可以随机采样;文中提到相比于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值