
介绍一个大牛的总结StevenCui,里面有包括MSCKF, ROVIO, ICE_BA, VINS的公式推导和代码解析。这篇就主要介绍MSCKF。
主流VIO

崔神从 耦合方案, 后端方案, 前端,视觉误差,初始化,回环,精度和效率角度总结了VIO主流方案视频讲解。
耦合方案
- 松耦合
将视觉约束后的位姿加入到联合优化是松耦合

- 紧耦合
将视觉约束加入到联合优化是紧耦合

后端优化方案
- 滤波
- 图优化
VIO坐标系

在 VIO器件中,通常集成了相机和IMU器件,当这个VIO传感器在世界中运动时,我们就有了世界坐标系(world, W坐标系),IMU坐标系(Body, B坐标系),相机坐标系(Camera, C坐标系)。如果仅使用视觉,就只需要计算相机到世界的坐标系变换也就是
IMU 测量
IMU的测量数据为在IMU(B)坐标系下的角速度和加速度,测量信号受噪声和零偏的影响。

状态变量
为了估计位姿,首先要选择状态变量,在紧耦合的方案中一般选择位姿,速度,零偏这几个量作为待估计的状态变量,共15维。

动力学方程,位移的微分为速度,速度的微分为加速度,旋转的微分为角速度。将其写成积分形式,然后由于是离散时刻进行采样,所以得到的是离散时刻的动力学方程,在带入IMU的测量有:


在预积分的论文中,Forster定义了俩个关键帧之间的误差