jieba是python中一个重要的标准函数库_python——Jieba库整理(基础知识+实例)

本文介绍了Python的Jieba库,包括其作为中文分词工具的功能,分词模式(精确、全和搜索引擎模式),并提供了英文和中文文本解析的实例。在英文文本解析中,通过split()函数处理单词;在中文文本解析中,使用jieba.lcut()进行分词。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先上目录,1.Jieba库是什么

2.Jieba库的使用(常见方法及函数)

3.实例——英文文本解析和中文文本解析

1.Jieba库是什么

Jieba库是优秀的中文分词第三方库,中文文本需要通过分词获得单个的词语。

Jieba库的分词原理:利用一个中文词库,确定汉字之间的关联概率,汉字间概率大的组成词组,形成分词结果。除了分词,用户还可以添加自定义的词组。

2.Jieba库的使用

Jieba库分词有3种模式

1)精确模式:就是把一段文本精确地切分成若干个中文单词,若干个中文单词之间经过组合,就精确地还原为之前的文本。其中不存在冗余单词。

2)全模式:将一段文本中所有可能的词语都扫描出来,可能有一段文本它可以切分成不同的模式,或者有不同的角度来切分变成不同的词语,在全模式下,Jieba库会将各种不同的组合都挖掘出来。分词后的信息再组合起来会有冗余,不再是原来的文本。

3)搜索引擎模式:在精确模式基础上,对发现的那些长的词语,我们会对它再次切分,进而适合搜索引擎对短词语的索引和搜索。也有冗余。

Jieba库常用函数:重点记输入什么类型(字符串?列表?)、输出什么类型(字符串?列表?);

搜索引擎模式:首先按照精确模式进行分词,分出来有“中华人民共和国”这个词,搜索引擎模式觉得它太长,又对改词进行了切词。

3.实例——要注意英文文本和中文文本解析的不同方法

1)英文文本解析

温馨提示:这里有很多关于文本的使用,相关部分我会写在另一篇文章中~~

def getext():

fname=input("请输入要打开的文件路径及名称,以txt结尾:")

fo=open(fname) #打开该文件,默认是文本文件,文本文件其实就是一个字符串

txt=fo.read() #<文件名>.read() 默认是读取文件全部内容

txt=txt.lower() #将文本所有字母小写

for ch in '!"#$%()*+&l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值