全盘检索代码,是否存在错误,是否可执行,是否存在逻辑错误:
import os
import sys
import re
import json
import gc
import time
import tempfile
import concurrent.futures
import difflib
import threading
import numpy as np
import librosa
import torch
import psutil
from typing import List, Dict, Tuple, Optional, Set
from threading import Lock, Semaphore, RLock
from datetime import datetime
from pydub import AudioSegment
from pydub.silence import split_on_silence
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from torch.utils.data import TensorDataset, DataLoader
from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout,
QPushButton, QLabel, QLineEdit, QTextEdit, QFileDialog, QProgressBar,
QGroupBox, QMessageBox, QListWidget, QSplitter, QTabWidget, QTableWidget,
QTableWidgetItem, QHeaderView, QAction, QMenu, QToolBar, QCheckBox, QComboBox, QSpinBox)
from PyQt5.QtCore import QThread, pyqtSignal, Qt, QTimer, QSize
from PyQt5.QtGui import QFont, QTextCursor, QColor, QIcon
# ====================== 资源监控器 ======================
class ResourceMonitor:
"""统一资源监控器(精简版)"""
def __init__(self):
self.gpu_available = torch.cuda.is_available()
def memory_percent(self) -> float:
"""获取内存使用百分比"""
try:
if self.gpu_available:
allocated = torch.cuda.memory_allocated() / (1024 ** 3)
total = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3)
return (allocated / total) * 100 if total > 0 else 0
else:
return psutil.virtual_memory().percent
except:
return 0
# ====================== 方言配置中心(优化版) ======================
class DialectConfig:
"""集中管理方言配置,便于维护和扩展(带缓存)"""
# 标准关键词
STANDARD_KEYWORDS = {
"opening": ["您好", "很高兴为您服务", "请问有什么可以帮您"],
"closing": ["感谢来电", "祝您生活愉快", "再见"],
"forbidden": ["不知道", "没办法", "你投诉吧", "随便你"]
}
# 贵州方言关键词
GUIZHOU_KEYWORDS = {
"opening": ["麻烦您喽", "请问搞哪样", "有咋个可以帮您", "多谢喽"],
"closing": ["搞归一喽", "麻烦您喽", "再见喽", "慢走喽"],
"forbidden": ["搞不成", "没得法", "随便你喽", "你投诉吧喽"]
}
# 方言到标准表达的映射
DIALECT_MAPPING = {
"恼火得很": "非常生气",
"鬼火戳": "很愤怒",
"搞不成": "无法完成",
"没得": "没有",
"搞哪样嘛": "做什么呢",
"归一喽": "完成了",
"咋个": "怎么",
"克哪点": "去哪里",
"麻烦您喽": "麻烦您了",
"多谢喽": "多谢了"
}
# 类属性缓存
_combined_keywords = None
_compiled_opening = None
_compiled_closing = None
_hotwords = None
_dialect_pattern = None
@classmethod
def get_combined_keywords(cls) -> Dict[str, List[str]]:
"""获取合并后的关键词集(带缓存)"""
if cls._combined_keywords is None:
cls._combined_keywords = {
"opening": cls.STANDARD_KEYWORDS["opening"] + cls.GUIZHOU_KEYWORDS["opening"],
"closing": cls.STANDARD_KEYWORDS["closing"] + cls.GUIZHOU_KEYWORDS["closing"],
"forbidden": cls.STANDARD_KEYWORDS["forbidden"] + cls.GUIZHOU_KEYWORDS["forbidden"]
}
return cls._combined_keywords
@classmethod
def get_compiled_opening(cls) -> List[re.Pattern]:
"""获取预编译的开场关键词正则表达式(带缓存)"""
if cls._compiled_opening is None:
keywords = cls.get_combined_keywords()["opening"]
cls._compiled_opening = [re.compile(re.escape(kw)) for kw in keywords]
return cls._compiled_opening
@classmethod
def get_compiled_closing(cls) -> List[re.Pattern]:
"""获取预编译的结束关键词正则表达式(带缓存)"""
if cls._compiled_closing is None:
keywords = cls.get_combined_keywords()["closing"]
cls._compiled_closing = [re.compile(re.escape(kw)) for kw in keywords]
return cls._compiled_closing
@classmethod
def get_asr_hotwords(cls) -> List[str]:
"""获取ASR热词列表(带缓存)"""
if cls._hotwords is None:
combined = cls.get_combined_keywords()
cls._hotwords = sorted(set(
combined["opening"] + combined["closing"]
))
return cls._hotwords
@classmethod
def preprocess_text(cls, texts: List[str]) -> List[str]:
"""将方言文本转换为标准表达(使用一次性替换)"""
if cls._dialect_pattern is None:
# 创建方言替换的正则表达式(一次性)
keys = sorted(cls.DIALECT_MAPPING.keys(), key=len, reverse=True)
pattern_str = "|".join(re.escape(key) for key in keys)
cls._dialect_pattern = re.compile(pattern_str)
def replace_match(match):
return cls.DIALECT_MAPPING[match.group(0)]
return [cls._dialect_pattern.sub(replace_match, text) for text in texts]
# ====================== 系统配置管理器 ======================
class ConfigManager:
"""管理应用程序配置"""
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._init_config()
return cls._instance
def _init_config(self):
"""初始化默认配置"""
self.config = {
"model_paths": {
"asr": "./models/iic-speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn",
"sentiment": "./models/IDEA-CCNL-Erlangshen-Roberta-110M-Sentiment"
},
"sample_rate": 16000,
"silence_thresh": -40,
"min_silence_len": 1000,
"max_concurrent": 1,
"dialect_config": "guizhou"
}
self.load_config()
def load_config(self):
"""从文件加载配置"""
try:
if os.path.exists("config.json"):
with open("config.json", "r") as f:
self.config.update(json.load(f))
except:
pass
def save_config(self):
"""保存配置到文件"""
try:
with open("config.json", "w") as f:
json.dump(self.config, f, indent=2)
except:
pass
def get(self, key: str, default=None):
"""获取配置值"""
return self.config.get(key, default)
def set(self, key: str, value):
"""设置配置值"""
self.config[key] = value
self.save_config()
# ====================== 音频处理工具(优化版) ======================
class AudioProcessor:
"""处理音频转换和特征提取(避免重复加载)"""
SUPPORTED_FORMATS = ('.mp3', '.wav', '.amr', '.m4a')
@staticmethod
def convert_to_wav(input_path: str, temp_dir: str) -> Optional[List[str]]:
"""将音频转换为WAV格式(在静音处分割)"""
try:
os.makedirs(temp_dir, exist_ok=True)
# 检查文件格式
if not any(input_path.lower().endswith(ext) for ext in AudioProcessor.SUPPORTED_FORMATS):
raise ValueError(f"不支持的音频格式: {os.path.splitext(input_path)[1]}")
if input_path.lower().endswith('.wav'):
return [input_path] # 已经是WAV格式
# 检查ffmpeg是否可用
try:
AudioSegment.converter = "ffmpeg" # 显式指定ffmpeg
audio = AudioSegment.from_file(input_path)
except FileNotFoundError:
print("错误: 未找到ffmpeg,请安装并添加到环境变量")
return None
# 长音频分段(超过10分钟)
if len(audio) > 10 * 60 * 1000: # 10分钟
return AudioProcessor._split_long_audio(audio, input_path, temp_dir)
else:
return AudioProcessor._convert_single_audio(audio, input_path, temp_dir)
except Exception as e:
print(f"格式转换失败: {str(e)}")
return None
@staticmethod
def _split_long_audio(audio: AudioSegment, input_path: str, temp_dir: str) -> List[str]:
"""分割长音频文件"""
wav_paths = []
# 在静音处分割音频
chunks = split_on_silence(
audio,
min_silence_len=ConfigManager().get("min_silence_len", 1000),
silence_thresh=ConfigManager().get("silence_thresh", -40),
keep_silence=500
)
# 合并小片段,避免分段过多
merged_chunks = []
current_chunk = AudioSegment.empty()
for chunk in chunks:
if len(current_chunk) + len(chunk) < 5 * 60 * 1000: # 5分钟
current_chunk += chunk
else:
if len(current_chunk) > 0:
merged_chunks.append(current_chunk)
current_chunk = chunk
if len(current_chunk) > 0:
merged_chunks.append(current_chunk)
# 导出分段音频
sample_rate = ConfigManager().get("sample_rate", 16000)
for i, chunk in enumerate(merged_chunks):
chunk = chunk.set_frame_rate(sample_rate).set_channels(1)
chunk_path = os.path.join(
temp_dir,
f"{os.path.splitext(os.path.basename(input_path))[0]}_part{i + 1}.wav"
)
chunk.export(chunk_path, format="wav")
wav_paths.append(chunk_path)
return wav_paths
@staticmethod
def _convert_single_audio(audio: AudioSegment, input_path: str, temp_dir: str) -> List[str]:
"""转换单个短音频文件"""
sample_rate = ConfigManager().get("sample_rate", 16000)
audio = audio.set_frame_rate(sample_rate).set_channels(1)
wav_path = os.path.join(temp_dir, os.path.splitext(os.path.basename(input_path))[0] + ".wav")
audio.export(wav_path, format="wav")
return [wav_path]
@staticmethod
def extract_features_from_audio(y: np.ndarray, sr: int) -> Dict[str, float]:
"""从已加载的音频数据中提取特征(避免重复加载)"""
try:
duration = librosa.get_duration(y=y, sr=sr)
segment_length = 60 # 60秒分段
total_segments = max(1, int(np.ceil(duration / segment_length)))
syllable_rates = []
volume_stabilities = []
for i in range(total_segments):
start = i * segment_length
end = min((i + 1) * segment_length, duration)
y_segment = y[int(start * sr):int(end * sr)]
if len(y_segment) == 0:
continue
# 语速计算
intervals = librosa.effects.split(y_segment, top_db=20)
speech_duration = sum(end - start for start, end in intervals) / sr
syllable_rate = len(intervals) / speech_duration if speech_duration > 0 else 0
syllable_rates.append(syllable_rate)
# 音量稳定性
rms = librosa.feature.rms(y=y_segment)[0]
if len(rms) > 0 and np.mean(rms) > 0:
volume_stability = np.std(rms) / np.mean(rms)
volume_stabilities.append(volume_stability)
return {
"duration": duration,
"syllable_rate": round(np.mean(syllable_rates) if syllable_rates else 0, 2),
"volume_stability": round(np.mean(volume_stabilities) if volume_stabilities else 0, 4)
}
except:
return {"duration": 0, "syllable_rate": 0, "volume_stability": 0}
# ====================== 模型加载器(优化版) ======================
class ModelLoader:
"""加载和管理AI模型(使用RLock)"""
asr_pipeline = None
sentiment_model = None
sentiment_tokenizer = None
model_lock = RLock() # 使用RLock代替Lock
@classmethod
def load_models(cls):
"""加载所有模型"""
config = ConfigManager()
# 加载ASR模型
if not cls.asr_pipeline:
with cls.model_lock:
if not cls.asr_pipeline: # 双重检查锁定
cls.load_asr_model(config.get("model_paths")["asr"])
# 加载情感分析模型
if not cls.sentiment_model:
with cls.model_lock:
if not cls.sentiment_model: # 双重检查锁定
cls.load_sentiment_model(config.get("model_paths")["sentiment"])
@classmethod
def reload_models(cls):
"""重新加载模型(配置变更后)"""
with cls.model_lock:
cls.asr_pipeline = None
cls.sentiment_model = None
cls.sentiment_tokenizer = None
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
cls.load_models()
@classmethod
def load_asr_model(cls, model_path: str):
"""加载语音识别模型"""
try:
if not os.path.exists(model_path):
raise FileNotFoundError(f"ASR模型路径不存在: {model_path}")
asr_kwargs = {}
if hasattr(torch, 'quantization'):
asr_kwargs['quantize'] = 'int8'
print("启用ASR模型量化")
cls.asr_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model=model_path,
device='cuda' if torch.cuda.is_available() else 'cpu',
**asr_kwargs
)
print("ASR模型加载完成")
except Exception as e:
print(f"加载ASR模型失败: {str(e)}")
raise
@classmethod
def load_sentiment_model(cls, model_path: str):
"""加载情感分析模型"""
try:
if not os.path.exists(model_path):
raise FileNotFoundError(f"情感分析模型路径不存在: {model_path}")
cls.sentiment_model = AutoModelForSequenceClassification.from_pretrained(model_path)
cls.sentiment_tokenizer = AutoTokenizer.from_pretrained(model_path)
if torch.cuda.is_available():
cls.sentiment_model = cls.sentiment_model.cuda()
print("情感分析模型加载完成")
except Exception as e:
print(f"加载情感分析模型失败: {str(e)}")
raise
# ====================== 核心分析线程(优化版) ======================
class AnalysisThread(QThread):
progress_updated = pyqtSignal(int, str, str)
result_ready = pyqtSignal(dict)
finished_all = pyqtSignal()
error_occurred = pyqtSignal(str, str)
memory_warning = pyqtSignal()
resource_cleanup = pyqtSignal()
def __init__(self, audio_paths: List[str], temp_dir: str = "temp_wav"):
super().__init__()
self.audio_paths = audio_paths
self.temp_dir = temp_dir
self.is_running = True
self.current_file = ""
self.max_concurrent = min(
ConfigManager().get("max_concurrent", 1),
self.get_max_concurrent_tasks()
)
self.resource_monitor = ResourceMonitor()
self.semaphore = Semaphore(self.max_concurrent)
os.makedirs(temp_dir, exist_ok=True)
def run(self):
try:
if not (ModelLoader.asr_pipeline and ModelLoader.sentiment_model):
self.error_occurred.emit("模型未加载", "请等待模型加载完成后再开始分析")
return
self.progress_updated.emit(0, f"最大并行任务数: {self.max_concurrent}", "")
# 使用线程池并行处理
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_concurrent) as executor:
# 创建任务
future_to_path = {}
for path in self.audio_paths:
if not self.is_running:
break
# 使用信号量控制并发
self.semaphore.acquire()
batch_size = self.get_available_batch_size()
future = executor.submit(self.analyze_audio, path, batch_size)
future_to_path[future] = path
future.add_done_callback(lambda f: self.semaphore.release())
# 处理完成的任务
for i, future in enumerate(concurrent.futures.as_completed(future_to_path)):
if not self.is_running:
break
path = future_to_path[future]
self.current_file = os.path.basename(path)
# 内存检查
if self.check_memory_usage():
self.memory_warning.emit()
self.is_running = False
break
try:
result = future.result()
if result:
self.result_ready.emit(result)
# 更新进度
progress = int((i + 1) / len(self.audio_paths) * 100)
self.progress_updated.emit(
progress,
f"完成: {self.current_file} ({i + 1}/{len(self.audio_paths)})",
self.current_file
)
except Exception as e:
result = {
"file_name": self.current_file,
"status": "error",
"error": f"分析失败: {str(e)}"
}
self.result_ready.emit(result)
# 分析完成后
if self.is_running:
self.finished_all.emit()
except Exception as e:
self.error_occurred.emit("系统错误", str(e))
traceback.print_exc()
finally:
# 确保资源清理
self.resource_cleanup.emit()
self.cleanup_resources()
def analyze_audio(self, audio_path: str, batch_size: int) -> Dict:
"""分析单个音频文件(整合所有优化)"""
result = {
"file_name": os.path.basename(audio_path),
"status": "processing"
}
wav_paths = []
try:
# 1. 音频格式转换
wav_paths = AudioProcessor.convert_to_wav(audio_path, self.temp_dir)
if not wav_paths:
result["error"] = "格式转换失败(请检查ffmpeg是否安装)"
result["status"] = "error"
return result
# 2. 提取音频特征(合并所有分段)
audio_features = self._extract_audio_features(wav_paths)
result.update(audio_features)
result["duration_str"] = self._format_duration(audio_features["duration"])
# 3. 语音识别与处理
all_segments, full_text = self._process_asr_segments(wav_paths)
# 4. 说话人区分(使用优化后的方法)
agent_segments, customer_segments = self.identify_speakers(all_segments)
# 5. 生成带说话人标签的文本
labeled_text = self._generate_labeled_text(all_segments, agent_segments, customer_segments)
result["asr_text"] = labeled_text.strip()
# 6. 文本分析(包含方言预处理)
text_analysis = self._analyze_text(agent_segments, customer_segments, batch_size)
result.update(text_analysis)
# 7. 服务规范检查(使用方言适配的关键词)
service_check = self._check_service_rules(agent_segments)
result.update(service_check)
# 8. 问题解决率(上下文关联)
result["issue_resolved"] = self._check_issue_resolution(customer_segments, agent_segments)
result["status"] = "success"
except Exception as e:
result["error"] = f"分析失败: {str(e)}"
result["status"] = "error"
finally:
# 清理临时文件
self._cleanup_temp_files(wav_paths)
# 显式内存清理
self.cleanup_resources()
return result
def identify_speakers(self, segments: List[Dict]) -> Tuple[List[Dict], List[Dict]]:
"""区分客服与客户(优化版:子串匹配+提前终止)"""
if not segments:
return [], []
# 获取预编译的正则表达式
opening_patterns = DialectConfig.get_compiled_opening()
closing_patterns = DialectConfig.get_compiled_closing()
agent_id = None
found_by_opening = False
found_by_closing = False
# 策略1:在前3段中查找开场白关键词(提前终止)
for seg in segments[:3]:
text = seg["text"]
# 检查是否包含任意开场关键词
for pattern in opening_patterns:
if pattern.search(text):
agent_id = seg["spk_id"]
found_by_opening = True
break # 找到即终止内层循环
if found_by_opening:
break # 找到即终止外层循环
# 策略2:在后3段中查找结束语关键词(提前终止)
if not found_by_opening:
# 逆序遍历最后3段
for seg in reversed(segments[-3:] if len(segments) >= 3 else segments):
text = seg["text"]
# 检查是否包含任意结束关键词
for pattern in closing_patterns:
if pattern.search(text):
agent_id = seg["spk_id"]
found_by_closing = True
break # 找到即终止内层循环
if found_by_closing:
break # 找到即终止外层循环
# 策略3:如果前两种策略未找到,使用说话频率最高的作为客服
if agent_id is None:
spk_counts = {}
for seg in segments:
spk_id = seg["spk_id"]
spk_counts[spk_id] = spk_counts.get(spk_id, 0) + 1
if spk_counts:
agent_id = max(spk_counts, key=spk_counts.get)
else:
return [], [] # 如果没有有效的agent_id,返回空列表
# 使用集合存储agent的spk_id,提高查询效率
agent_spk_ids = {agent_id}
return (
[seg for seg in segments if seg["spk_id"] in agent_spk_ids],
[seg for seg in segments if seg["spk_id"] not in agent_spk_ids]
)
def _analyze_text(self, agent_segments: List[Dict], customer_segments: List[Dict],
batch_size: int) -> Dict:
"""文本情感分析(优化版:向量化批处理)"""
def analyze_speaker(segments: List[Dict], speaker_type: str) -> Dict:
if not segments:
return {
f"{speaker_type}_negative": 0.0,
f"{speaker_type}_neutral": 1.0,
f"{speaker_type}_positive": 0.0,
f"{speaker_type}_emotions": "无"
}
# 方言预处理 - 使用优化的一次性替换
texts = [seg["text"] for seg in segments]
processed_texts = DialectConfig.preprocess_text(texts)
# 使用DataLoader进行批处理
with ModelLoader.model_lock:
inputs = ModelLoader.sentiment_tokenizer(
processed_texts,
padding=True,
truncation=True,
max_length=128,
return_tensors="pt"
)
# 创建TensorDataset和DataLoader
dataset = TensorDataset(inputs['input_ids'], inputs['attention_mask'])
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)
device = "cuda" if torch.cuda.is_available() else "cpu"
sentiment_dist = []
emotions = []
# 批量处理
for batch in dataloader:
input_ids, attention_mask = batch
inputs = {
'input_ids': input_ids.to(device),
'attention_mask': attention_mask.to(device)
}
with torch.no_grad():
outputs = ModelLoader.sentiment_model(**inputs)
batch_probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
sentiment_dist.append(batch_probs.cpu())
# 情绪识别(批量)
emotion_keywords = ["愤怒", "生气", "鬼火", "不耐烦", "搞哪样嘛"]
for text in processed_texts:
if any(kw in text for kw in emotion_keywords):
if any(kw in text for kw in ["愤怒", "生气", "鬼火"]):
emotions.append("愤怒")
elif any(kw in text for kw in ["不耐烦", "搞哪样嘛"]):
emotions.append("不耐烦")
# 合并结果
if sentiment_dist:
all_probs = torch.cat(sentiment_dist, dim=0)
avg_sentiment = torch.mean(all_probs, dim=0).tolist()
else:
avg_sentiment = [0.0, 1.0, 0.0] # 默认值
return {
f"{speaker_type}_negative": round(avg_sentiment[0], 4),
f"{speaker_type}_neutral": round(avg_sentiment[1], 4),
f"{speaker_type}_positive": round(avg_sentiment[2], 4),
f"{speaker_type}_emotions": ",".join(set(emotions)) if emotions else "无"
}
return {
**analyze_speaker(agent_segments, "agent"),
**analyze_speaker(customer_segments, "customer")
}
# ====================== 辅助方法 ======================
def get_available_batch_size(self) -> int:
"""根据GPU内存动态调整batch size(考虑并行)"""
if not torch.cuda.is_available():
return 4 # CPU默认批次
total_mem = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) # GB
per_task_mem = total_mem / self.max_concurrent
# 修正批次大小逻辑:显存越少,批次越小
if per_task_mem < 2:
return 2
elif per_task_mem < 4:
return 4
else:
return 8
def get_max_concurrent_tasks(self) -> int:
"""根据系统资源计算最大并行任务数"""
if torch.cuda.is_available():
total_mem = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3)
if total_mem < 6:
return 1
elif total_mem < 12:
return 2
else:
return 3
else:
# CPU模式下根据核心数设置
return max(1, os.cpu_count() // 2)
def check_memory_usage(self) -> bool:
"""检查内存使用(动态阈值)"""
try:
mem_percent = self.resource_monitor.memory_percent()
return mem_percent > 85 # 超过85%则警告
except:
return False
def _extract_audio_features(self, wav_paths: List[str]) -> Dict[str, float]:
"""提取音频特征(合并所有分段)"""
combined_y = np.array([], dtype=np.float32)
sr = ConfigManager().get("sample_rate", 16000)
for path in wav_paths:
y, _ = librosa.load(path, sr=sr)
combined_y = np.concatenate((combined_y, y))
return AudioProcessor.extract_features_from_audio(combined_y, sr)
def _process_asr_segments(self, wav_paths: List[str]) -> Tuple[List[Dict], str]:
"""处理ASR分段"""
segments = []
full_text = ""
for path in wav_paths:
result = ModelLoader.asr_pipeline(
path,
hotwords=DialectConfig.get_asr_hotwords(),
output_dir=None
)
for seg in result[0]["sentences"]:
segments.append({
"start": seg["start"],
"end": seg["end"],
"text": seg["text"],
"spk_id": seg.get("spk_id", "0")
})
full_text += seg["text"] + " "
return segments, full_text.strip()
def _generate_labeled_text(self, all_segments: List[Dict],
agent_segments: List[Dict],
customer_segments: List[Dict]) -> str:
"""生成带说话人标签的文本"""
agent_spk_id = agent_segments[0]["spk_id"] if agent_segments else None
customer_spk_id = customer_segments[0]["spk_id"] if customer_segments else None
labeled_text = []
for seg in all_segments:
speaker = "客服" if seg["spk_id"] == agent_spk_id else "客户"
labeled_text.append(f"[{speaker}]: {seg['text']}")
return "\n".join(labeled_text)
def _check_service_rules(self, agent_segments: List[Dict]) -> Dict:
"""检查服务规范"""
forbidden_keywords = DialectConfig.get_combined_keywords()["forbidden"]
found_forbidden = []
found_opening = False
found_closing = False
# 检查开场白(前3段)
for seg in agent_segments[:3]:
text = seg["text"]
if any(kw in text for kw in DialectConfig.get_combined_keywords()["opening"]):
found_opening = True
break
# 检查结束语(后3段)
for seg in reversed(agent_segments[-3:] if len(agent_segments) >= 3 else agent_segments):
text = seg["text"]
if any(kw in text for kw in DialectConfig.get_combined_keywords()["closing"]):
found_closing = True
break
# 检查禁用词
for seg in agent_segments:
text = seg["text"]
for kw in forbidden_keywords:
if kw in text:
found_forbidden.append(kw)
break
return {
"opening_found": found_opening,
"closing_found": found_closing,
"forbidden_words": ", ".join(set(found_forbidden)) if found_forbidden else "无"
}
def _check_issue_resolution(self, customer_segments: List[Dict],
agent_segments: List[Dict]) -> bool:
"""检查问题是否解决(上下文关联)"""
# 简化实现:如果客户最后一段包含"谢谢"或"解决",则认为问题已解决
if customer_segments:
last_customer_text = customer_segments[-1]["text"]
resolution_keywords = ["谢谢", "解决", "可以", "好的", "明白了"]
if any(kw in last_customer_text for kw in resolution_keywords):
return True
# 如果客服最后一段包含"还有什么问题"且客户没有回应
if agent_segments:
last_agent_text = agent_segments[-1]["text"]
if "还有什么问题" in last_agent_text:
return True
return False
def _cleanup_temp_files(self, paths: List[str]):
"""清理临时文件"""
for path in paths:
try:
if os.path.exists(path):
os.remove(path)
except:
pass
def _format_duration(self, seconds: float) -> str:
"""将秒转换为时分秒格式"""
minutes, seconds = divmod(int(seconds), 60)
hours, minutes = divmod(minutes, 60)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
def cleanup_resources(self):
"""显式清理资源"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def stop(self):
"""停止分析"""
self.is_running = False
# ====================== 模型加载线程 ======================
class ModelLoadThread(QThread):
progress_updated = pyqtSignal(int, str)
finished = pyqtSignal(bool, str)
def run(self):
try:
# 检查模型路径
config = ConfigManager().get("model_paths")
if not os.path.exists(config["asr"]):
self.finished.emit(False, "ASR模型路径不存在")
return
if not os.path.exists(config["sentiment"]):
self.finished.emit(False, "情感分析模型路径不存在")
return
self.progress_updated.emit(20, "加载语音识别模型...")
ModelLoader.load_asr_model(config["asr"])
self.progress_updated.emit(60, "加载情感分析模型...")
ModelLoader.load_sentiment_model(config["sentiment"])
self.progress_updated.emit(100, "模型加载完成")
self.finished.emit(True, "模型加载成功。建议:可通过设置界面修改模型路径")
except Exception as e:
self.finished.emit(False, f"模型加载失败: {str(e)}。建议:检查模型路径是否正确,或重新下载模型文件")
# ====================== GUI主界面 ======================
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("贵州方言客服质检系统")
self.setGeometry(100, 100, 1200, 800)
self.setup_ui()
self.setup_menu()
self.analysis_thread = None
self.model_load_thread = None
self.temp_dir = "temp_wav"
os.makedirs(self.temp_dir, exist_ok=True)
def setup_ui(self):
"""设置用户界面"""
# 主布局
main_widget = QWidget()
main_layout = QVBoxLayout()
main_widget.setLayout(main_layout)
self.setCentralWidget(main_widget)
# 工具栏
toolbar = QToolBar("主工具栏")
toolbar.setIconSize(QSize(24, 24))
self.addToolBar(toolbar)
# 添加文件按钮
add_file_action = QAction(QIcon("icons/add.png"), "添加文件", self)
add_file_action.triggered.connect(self.add_files)
toolbar.addAction(add_file_action)
# 开始分析按钮
analyze_action = QAction(QIcon("icons/start.png"), "开始分析", self)
analyze_action.triggered.connect(self.start_analysis)
toolbar.addAction(analyze_action)
# 停止按钮
stop_action = QAction(QIcon("icons/stop.png"), "停止分析", self)
stop_action.triggered.connect(self.stop_analysis)
toolbar.addAction(stop_action)
# 设置按钮
settings_action = QAction(QIcon("icons/settings.png"), "设置", self)
settings_action.triggered.connect(self.open_settings)
toolbar.addAction(settings_action)
# 分割布局
splitter = QSplitter(Qt.Horizontal)
main_layout.addWidget(splitter)
# 左侧文件列表
left_widget = QWidget()
left_layout = QVBoxLayout()
left_widget.setLayout(left_layout)
file_list_label = QLabel("待分析文件列表")
file_list_label.setFont(QFont("Arial", 12, QFont.Bold))
left_layout.addWidget(file_list_label)
self.file_list = QListWidget()
self.file_list.setSelectionMode(QListWidget.ExtendedSelection)
left_layout.addWidget(self.file_list)
# 右侧结果区域
right_widget = QWidget()
right_layout = QVBoxLayout()
right_widget.setLayout(right_layout)
# 进度条
progress_label = QLabel("分析进度")
progress_label.setFont(QFont("Arial", 12, QFont.Bold))
right_layout.addWidget(progress_label)
self.progress_bar = QProgressBar()
self.progress_bar.setRange(0, 100)
self.progress_bar.setTextVisible(True)
right_layout.addWidget(self.progress_bar)
# 当前文件标签
self.current_file_label = QLabel("当前文件: 无")
right_layout.addWidget(self.current_file_label)
# 结果标签页
self.tab_widget = QTabWidget()
right_layout.addWidget(self.tab_widget, 1)
# 文本结果标签页
text_tab = QWidget()
text_layout = QVBoxLayout()
text_tab.setLayout(text_layout)
self.text_result = QTextEdit()
self.text_result.setReadOnly(True)
text_layout.addWidget(self.text_result)
self.tab_widget.addTab(text_tab, "文本结果")
# 详细结果标签页
detail_tab = QWidget()
detail_layout = QVBoxLayout()
detail_tab.setLayout(detail_layout)
self.result_table = QTableWidget()
self.result_table.setColumnCount(10)
self.result_table.setHorizontalHeaderLabels([
"文件名", "时长", "语速", "音量稳定性",
"客服情感", "客户情感", "开场白", "结束语",
"禁用词", "问题解决"
])
self.result_table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch)
detail_layout.addWidget(self.result_table)
self.tab_widget.addTab(detail_tab, "详细结果")
# 添加左右部件到分割器
splitter.addWidget(left_widget)
splitter.addWidget(right_widget)
splitter.setSizes([300, 900])
def setup_menu(self):
"""设置菜单栏"""
menu_bar = self.menuBar()
# 文件菜单
file_menu = menu_bar.addMenu("文件")
add_file_action = QAction("添加文件", self)
add_file_action.triggered.connect(self.add_files)
file_menu.addAction(add_file_action)
export_action = QAction("导出结果", self)
export_action.triggered.connect(self.export_results)
file_menu.addAction(export_action)
exit_action = QAction("退出", self)
exit_action.triggered.connect(self.close)
file_menu.addAction(exit_action)
# 分析菜单
analysis_menu = menu_bar.addMenu("分析")
start_action = QAction("开始分析", self)
start_action.triggered.connect(self.start_analysis)
analysis_menu.addAction(start_action)
stop_action = QAction("停止分析", self)
stop_action.triggered.connect(self.stop_analysis)
analysis_menu.addAction(stop_action)
# 设置菜单
settings_menu = menu_bar.addMenu("设置")
config_action = QAction("系统配置", self)
config_action.triggered.connect(self.open_settings)
settings_menu.addAction(config_action)
model_action = QAction("加载模型", self)
model_action.triggered.connect(self.load_models)
settings_menu.addAction(model_action)
def add_files(self):
"""添加文件到分析列表"""
files, _ = QFileDialog.getOpenFileNames(
self,
"选择音频文件",
"",
"音频文件 (*.mp3 *.wav *.amr *.m4a)"
)
if files:
for file in files:
self.file_list.addItem(file)
def start_analysis(self):
"""开始分析"""
if self.file_list.count() == 0:
QMessageBox.warning(self, "警告", "请先添加要分析的音频文件")
return
if not (ModelLoader.asr_pipeline and ModelLoader.sentiment_model):
QMessageBox.warning(self, "警告", "模型未加载,请先加载模型")
return
# 获取文件路径
audio_paths = [self.file_list.item(i).text() for i in range(self.file_list.count())]
# 清空结果
self.text_result.clear()
self.result_table.setRowCount(0)
# 创建分析线程
self.analysis_thread = AnalysisThread(audio_paths, self.temp_dir)
# 连接信号
self.analysis_thread.progress_updated.connect(self.update_progress)
self.analysis_thread.result_ready.connect(self.handle_result)
self.analysis_thread.finished_all.connect(self.analysis_finished)
self.analysis_thread.error_occurred.connect(self.show_error)
self.analysis_thread.memory_warning.connect(self.handle_memory_warning)
self.analysis_thread.resource_cleanup.connect(self.cleanup_resources)
# 启动线程
self.analysis_thread.start()
def stop_analysis(self):
"""停止分析"""
if self.analysis_thread and self.analysis_thread.isRunning():
self.analysis_thread.stop()
self.analysis_thread.wait()
QMessageBox.information(self, "信息", "分析已停止")
def load_models(self):
"""加载模型"""
if self.model_load_thread and self.model_load_thread.isRunning():
return
self.model_load_thread = ModelLoadThread()
self.model_load_thread.progress_updated.connect(
lambda value, msg: self.progress_bar.setValue(value)
)
self.model_load_thread.finished.connect(self.handle_model_load_result)
self.model_load_thread.start()
def update_progress(self, progress: int, message: str, current_file: str):
"""更新进度"""
self.progress_bar.setValue(progress)
self.current_file_label.setText(f"当前文件: {current_file}")
def handle_result(self, result: Dict):
"""处理分析结果"""
# 添加到文本结果
self.text_result.append(f"文件: {result['file_name']}")
self.text_result.append(f"状态: {result['status']}")
if result["status"] == "success":
self.text_result.append(f"时长: {result['duration_str']}")
self.text_result.append(f"语速: {result['syllable_rate']} 音节/秒")
self.text_result.append(f"音量稳定性: {result['volume_stability']}")
self.text_result.append(f"客服情感: 负面({result['agent_negative']:.2%}) "
f"中性({result['agent_neutral']:.2%}) "
f"正面({result['agent_positive']:.2%})")
self.text_result.append(f"客服情绪: {result['agent_emotions']}")
self.text_result.append(f"客户情感: 负面({result['customer_negative']:.2%}) "
f"中性({result['customer_neutral']:.2%}) "
f"正面({result['customer_positive']:.2%})")
self.text_result.append(f"客户情绪: {result['customer_emotions']}")
self.text_result.append(f"开场白: {'有' if result['opening_found'] else '无'}")
self.text_result.append(f"结束语: {'有' if result['closing_found'] else '无'}")
self.text_result.append(f"禁用词: {result['forbidden_words']}")
self.text_result.append(f"问题解决: {'是' if result['issue_resolved'] else '否'}")
self.text_result.append("\n=== 对话文本 ===\n")
self.text_result.append(result["asr_text"])
self.text_result.append("\n" + "=" * 50 + "\n")
# 添加到结果表格
row = self.result_table.rowCount()
self.result_table.insertRow(row)
self.result_table.setItem(row, 0, QTableWidgetItem(result["file_name"]))
self.result_table.setItem(row, 1, QTableWidgetItem(result["duration_str"]))
self.result_table.setItem(row, 2, QTableWidgetItem(str(result["syllable_rate"])))
self.result_table.setItem(row, 3, QTableWidgetItem(str(result["volume_stability"])))
self.result_table.setItem(row, 4, QTableWidgetItem(
f"负:{result['agent_negative']:.2f} 中:{result['agent_neutral']:.2f} 正:{result['agent_positive']:.2f}"
))
self.result_table.setItem(row, 5, QTableWidgetItem(
f"负:{result['customer_negative']:.2f} 中:{result['customer_neutral']:.2f} 正:{result['customer_positive']:.2f}"
))
self.result_table.setItem(row, 6, QTableWidgetItem("是" if result["opening_found"] else "否"))
self.result_table.setItem(row, 7, QTableWidgetItem("是" if result["closing_found"] else "否"))
self.result_table.setItem(row, 8, QTableWidgetItem(result["forbidden_words"]))
self.result_table.setItem(row, 9, QTableWidgetItem("是" if result["issue_resolved"] else "否"))
# 根据结果着色
if not result["opening_found"]:
self.result_table.item(row, 6).setBackground(QColor(255, 200, 200))
if not result["closing_found"]:
self.result_table.item(row, 7).setBackground(QColor(255, 200, 200))
if result["forbidden_words"] != "无":
self.result_table.item(row, 8).setBackground(QColor(255, 200, 200))
if not result["issue_resolved"]:
self.result_table.item(row, 9).setBackground(QColor(255, 200, 200))
def analysis_finished(self):
"""分析完成"""
QMessageBox.information(self, "完成", "所有音频分析完成")
self.progress_bar.setValue(100)
def show_error(self, title: str, message: str):
"""显示错误信息"""
QMessageBox.critical(self, title, message)
def handle_memory_warning(self):
"""处理内存警告"""
QMessageBox.warning(self, "内存警告", "内存使用过高,分析已停止。请关闭其他应用程序后重试")
def cleanup_resources(self):
"""清理资源"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def handle_model_load_result(self, success: bool, message: str):
"""处理模型加载结果"""
if success:
QMessageBox.information(self, "成功", message)
else:
QMessageBox.critical(self, "错误", message)
def open_settings(self):
"""打开设置对话框"""
settings_dialog = QDialog(self)
settings_dialog.setWindowTitle("系统设置")
settings_dialog.setFixedSize(500, 400)
layout = QVBoxLayout()
# ASR模型路径
asr_layout = QHBoxLayout()
asr_label = QLabel("ASR模型路径:")
asr_line = QLineEdit(ConfigManager().get("model_paths")["asr"])
asr_browse = QPushButton("浏览...")
def browse_asr():
path = QFileDialog.getExistingDirectory(self, "选择ASR模型目录")
if path:
asr_line.setText(path)
asr_browse.clicked.connect(browse_asr)
asr_layout.addWidget(asr_label)
asr_layout.addWidget(asr_line)
asr_layout.addWidget(asr_browse)
layout.addLayout(asr_layout)
# 情感分析模型路径
sentiment_layout = QHBoxLayout()
sentiment_label = QLabel("情感模型路径:")
sentiment_line = QLineEdit(ConfigManager().get("model_paths")["sentiment"])
sentiment_browse = QPushButton("浏览...")
def browse_sentiment():
path = QFileDialog.getExistingDirectory(self, "选择情感模型目录")
if path:
sentiment_line.setText(path)
sentiment_browse.clicked.connect(browse_sentiment)
sentiment_layout.addWidget(sentiment_label)
sentiment_layout.addWidget(sentiment_line)
sentiment_layout.addWidget(sentiment_browse)
layout.addLayout(sentiment_layout)
# 并发设置
concurrent_layout = QHBoxLayout()
concurrent_label = QLabel("最大并发任务:")
concurrent_spin = QSpinBox()
concurrent_spin.setRange(1, 8)
concurrent_spin.setValue(ConfigManager().get("max_concurrent", 1))
concurrent_layout.addWidget(concurrent_label)
concurrent_layout.addWidget(concurrent_spin)
layout.addLayout(concurrent_layout)
# 方言设置
dialect_layout = QHBoxLayout()
dialect_label = QLabel("方言设置:")
dialect_combo = QComboBox()
dialect_combo.addItems(["标准普通话", "贵州方言"])
dialect_combo.setCurrentIndex(1 if ConfigManager().get("dialect_config") == "guizhou" else 0)
dialect_layout.addWidget(dialect_label)
dialect_layout.addWidget(dialect_combo)
layout.addLayout(dialect_layout)
# 按钮
button_box = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel)
button_box.accepted.connect(settings_dialog.accept)
button_box.rejected.connect(settings_dialog.reject)
layout.addWidget(button_box)
settings_dialog.setLayout(layout)
if settings_dialog.exec_() == QDialog.Accepted:
# 保存设置
ConfigManager().set("model_paths", {
"asr": asr_line.text(),
"sentiment": sentiment_line.text()
})
ConfigManager().set("max_concurrent", concurrent_spin.value())
ConfigManager().set("dialect_config", "guizhou" if dialect_combo.currentIndex() == 1 else "standard")
# 重新加载模型
ModelLoader.reload_models()
def export_results(self):
"""导出结果"""
if self.result_table.rowCount() == 0:
QMessageBox.warning(self, "警告", "没有可导出的结果")
return
path, _ = QFileDialog.getSaveFileName(
self,
"保存结果",
"",
"CSV文件 (*.csv)"
)
if path:
try:
with open(path, "w", encoding="utf-8") as f:
# 写入表头
headers = []
for col in range(self.result_table.columnCount()):
headers.append(self.result_table.horizontalHeaderItem(col).text())
f.write(",".join(headers) + "\n")
# 写入数据
for row in range(self.result_table.rowCount()):
row_data = []
for col in range(self.result_table.columnCount()):
item = self.result_table.item(row, col)
row_data.append(item.text() if item else "")
f.write(",".join(row_data) + "\n")
QMessageBox.information(self, "成功", f"结果已导出到: {path}")
except Exception as e:
QMessageBox.critical(self, "错误", f"导出失败: {str(e)}")
def closeEvent(self, event):
"""关闭事件处理"""
if self.analysis_thread and self.analysis_thread.isRunning():
self.analysis_thread.stop()
self.analysis_thread.wait()
# 清理临时目录
try:
for file in os.listdir(self.temp_dir):
os.remove(os.path.join(self.temp_dir, file))
os.rmdir(self.temp_dir)
except:
pass
event.accept()
# ====================== 程序入口 ======================
if __name__ == "__main__":
torch.set_num_threads(4) # 限制CPU线程数
app = QApplication(sys.argv)
# 设置应用样式
app.setStyle('Fusion')
window = MainWindow()
window.show()
sys.exit(app.exec_())
最新发布