根据历史数据预测未来数据_Power BI根据历史数据进行预测的几种方式

本文介绍了在Power BI中根据历史数据进行预测的三种方法:1) 直接使用上年数据;2) 上两年同期数据平均值;3) 历史数据的移动平均值。通过这些方法,可以对未发生的业务进行预测,并结合增长系数进行动态调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

预算分析时,还经常需要对未发生的业务进行预测,预测也是年度目标制定的重要依据,本文就来看看几种常用的简易预测方式,以及用PowerBI如何实现。

1、利用上年数据作为本年的预测数

获取上年同期的数据可以用时间智能函数SAMEPERIODLASTYEAR,也可以用更通用的DATEADD函数来表达,度量值如下:

736c4f18655ecc13a5afee75951886a0.png

这个度量值同样先做了判断,只有在未发生业务的日期,才返回预测数据,也就是上年同期数。

结果如下:

15a4b32baeac4f41929b5fa3f1fb403e.png

按上年同期数据进行预测,适合较为成熟稳定的业务。

2、按上两年同期数据的平均值,作为本年的预测数

先分别计算上年和前年的同期数据,然后取平均数,作为预测数据:

8c8143d039037c9020caa4860998720b.png

结果如下:

ba5ea747c5ac2f44b288d347570c2046.png

逻辑与上面类似,只是为了避免一年数据的偶然性,使用了两年的数据进行折中,所以每天的数据,相对波动更小一些。

3、按上年同期数据的移动平均值,作为本年的预测数

比如按30天移动平均,度量值可以这样写:

d858968c23bb31e8049f4154fc0aebd8.png

那么预测度量值就可以直接这样写了:

8391adc7fd56af918be812f6f79b364e.png

结果如下:

3fbd8af794fc32ca1e06a65a9b985cee.png

按移动平均做的预测,每日数据看起来平滑多了。

实际应用中,不会完全按照历史数据本身作为预测数据,一般还会乘个增长系数,以第一种预测方式为例,比如按去年同期数据上涨10%来预测,度量值中乘以1.1即可。

1d7c1e12c02160a956a19ccd539d89b9.png

进一步的,还可以利用参数来做个动态系数,以便进行动态的调整预测,

e0bdbac42c36e7feaccf9dd6349ec5a6.png

然后将度量值修改为:

31232c4630f996205f05375c5e4a0de1.png

效果如下:

6a2f3026d722a6124c9a530bac24ccc1.gif

其他两种预测方式也都可以结合参数来动态预测,这里不再一一介绍。

上面只是几种简易的根据历史数据进行预测的方式,逻辑很简单,对于更复杂的预测,只要有明确的计算逻辑,同样也可以在PowerBI中实现。

-精彩推荐-

4ef6e3dbc445374f459bec6705f2ce32.png

299be508c32691e993901c5b03eb4196.png6f11beb9cec3a144d5f31f32455ea945.png如果你刚开始学习Power BI,可在微信公众号后台回复"PowerBI",获取《七天入门PowerBI》电子书,轻松上手。成为PowerBI星球会员,获取更多学习资源ccb2428b59606fa42f80e9f2387cc0a2.png↑ 扫码加入,和2.6k+ 学习者一起成长
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值