广义典型相关分析_数学建模/机器学习:广义加性模型(GAM)及其Python实现

本文介绍了如何使用Python的pygam库进行广义相加模型(GAM)的实现,特别是在面对变量间相关性较弱的情况时,用于预测和分析。以2020年MCM问题中鱼群分布为例,展示了GAM如何用于处理环境因素与鱼群数量的关系,并通过预测温度来推测2070年的鱼群分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

笔者做过国赛也做过美赛,其中一类典型问题就是分析相关性,从而进行预测或者其他操作。这类问题通常情况下属于比较常规的问题,一般通过matlab或SPSS分析相关性,得到一个较好的数值即可。

然而有的时候不论取哪两个或者哪几个变量,相关性都弱得令人发指,以至于无法昧着良心继续煞有介事地絮叨他们之间的相关性,这个时候,如果变量较多,可以考虑广义相加模型,实质是分析因变量与多个自变量之间的相关性。目前国内网站只有R语言实现,在此笔者将为大家补充Python对GAM的实现。

以2020年MCM的problem a为例,鱼群的分布,或者说某一时间某一地点鱼的种群数量和纬度/经度/水温其实都没有特别强的相关性,甚至可以说很弱,那么这个时候,如果还想通过其他变量预测2070年鱼群的分布便不能用简单的相关。

在一篇1997年的文献《Trends in abundance and geographic distribution of North Sea herring in relation to environmental factors》中,作者Christos D. Maravelias为我们提供的这一思路非常值得借鉴。

170f3f2bf31021c3f6b9041636df3dbb.png

cbfce76d6a23a73da30ff3bef41f1282.png

Christos D. Maravelias认为可以通过对四种变量的分析对鱼群数量进行定性进而预测。

下面介绍一下这个模型。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值