强化学习曾小健2
"强化学习曾小健(主号)、强化学习曾小健2、我是机器人曾小健具身、AI生成曾小健2"都是该号副号。总超600w+点击。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(微chat同GitHub:ArtificialZeng)。这个博客的主题主要是AI生成式技术、AI相关技术、机器人具身智能技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;其他有一个金融号(少更新)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
“混淆矩阵)分析模型在不同类别上的表现,识别出可能的过拟合特征。“ 这个具体是怎么操作的
答案在图像分类任务中,使用混淆矩阵分析模型在不同类别上的表现是一个有效的步骤,可以帮助识别潜在的过拟合特征。原创 2024-11-29 18:13:17 · 1092 阅读 · 0 评论 -
图像分类算法竞赛中A榜比较好,B榜比较一般,这种情况应该怎么办
在图像分类竞赛中,A榜表现良好而B榜一般的情况需要仔细分析。通过调整模型、优化数据处理流程以及使用适当的验证策略,可以提高模型在未见数据上的泛化能力,从而提升B榜的表现。在图像分类算法竞赛中,如果A榜表现较好而B榜表现一般,这通常意味着模型可能在A榜的数据上过拟合了。调整模型和特征选择:首先,需要检查模型是否在A榜数据上过度拟合。可以通过删除与B榜数据分布不一致的特征来减少过拟合的风险。此外,还可以尝试不同的模型结构或集成方法,以提高模型的泛化能力。线下验证和版本控制。原创 2024-11-29 16:31:28 · 156 阅读 · 0 评论 -
图像分类具体怎么用bagging和boosting
Bagging和Boosting各有优势,Bagging主要降低方差,提高稳定性,而Boosting则通过逐步优化降低偏差,提高准确性。在图像分类任务中,可以根据具体需求选择合适的方法或结合使用,以达到最佳效果。原创 2024-11-29 17:14:49 · 455 阅读 · 0 评论 -
transformer的qkv分别是什么
在Transformer模型中,QKV是通过输入特征向量经过三个不同的线性变换得到的。具体来说,输入特征向量首先被映射为查询、键和值向量,这三个向量的维度通常由模型的参数设定。这三个概念是自注意力机制的核心部分,用于计算注意力权重并实现信息的传递和处理。),在这种机制下,会为每个头生成一组独立的QKV向量,然后将这些头的结果拼接起来作为最终输出。QKV在Transformer模型中扮演着至关重要的角色,它们不仅帮助模型理解输入数据的上下文关系,还通过自注意力机制提高了模型的计算效率和准确性。原创 2024-12-04 15:56:54 · 2980 阅读 · 0 评论 -
BERT中的多头注意力机制-为什么需要多头?
多头注意力机制通过并行处理多个子空间的信息,提高了模型的学习能力和灵活性。虽然它的计算量看似更大,但实际操作中可以通过硬件加速等方式有效管理。相比之下,直接使用一个大矩阵进行统一计算可能会限制模型捕捉多样化的信息能力。如果你需要具体的代码示例来理解多头注意力机制的具体实现细节,我可以为你提供一个简化版的PyTorch实现。原创 2024-12-10 21:51:47 · 727 阅读 · 0 评论 -
一文理解多模态大语言模型——下
多“多模态LLM可以通过多种不同的方式成功构建,核心思路在于把多模态数据编码为嵌入维度和尺寸一致的向量,使得原始大语言模型可以对多模态数据“理解并翻译”。--- 译者”。原创 2024-12-10 18:15:52 · 853 阅读 · 0 评论 -
为什么NLP用Layernorm而不是batchnorm?
批量归一化(Batch Normalization层归一化(Layer Normalization。原创 2024-12-10 22:04:34 · 815 阅读 · 0 评论 -
详细解释什么叫agent中的ReAct模式
答案ReAct模式,即Reasoning and Acting的结合,是一种在人工智能代理(Agent)开发中广泛应用的设计思想。它强调推理(Reasoning)与行动(Acting)的有机结合,使得Agent能够在复杂和动态的环境中更有效地执行任务。原创 2024-12-10 21:41:19 · 1183 阅读 · 0 评论