ubuntu anaconda虚拟环境安装gdal

在Ubuntu系统中安装GDAL库遇到困难,尝试多种编译方法未果,最终在Anaconda虚拟环境中通过`condainstallgdal`成功,但随后出现`libtiledb.so.2.2`的ImportError。解决方法是找到已安装的`libtiledb.so.2.3`,创建软链接到`libtiledb.so.2.2`。如果之前设置过环境变量,需清除。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ubuntu 安装gdal


由于ubuntu安装gdal库折腾了半天,整的有点恶心,记录一下。。

貌似再win10上非常容易,只需要下whl就可以了,但是ubuntu上就很麻烦。

  1. 首先网上有很多先编译c++版本的再编译python版本的这种,我试了试都没成功。而且这种就算成功似乎也不能再anaconda的虚拟环境里面配合torch等其他一起跑。

  2. pip install gdal, 报错,卒

  3. 后来我直接在虚拟环境里面 conda install gdal,就可以成功安装了,但是打开python
    输入from osgeo import gdal时又报错
    报错:ImportError: libtiledb.so.2.2: cannot open shared object file: No such file or directory

这里参考了这个博主的思路:

https://blog.csdn.net/weixin_40755306/article/details/126499626

其实libtiledb.so已经安装了,查找到:

/home/XX/anaconda3/envs/torch17/lib/ libtiledb.so.2.3

重新建立软连接:

ln -s /home/XX/anaconda3/envs/torch17/lib/libtiledb.so.2.3 /home/XX/anaconda3/envs/torch17/lib/libtiledb.so.2.2

4.可能还会报其他错误,要是使用过第一步那种方法并且在.bashrc里设置了环境变量的,记得删掉。

### Ubuntu 18.04 上 GDAL 安装错误解决方案 在 Ubuntu 18.04 中安装 GDAL 可能会因为依赖项缺失或其他配置问题而引发错误。以下是针对常见问题的分析和解决方法。 #### 错误原因分析 通常情况下,在 ROS 下使用 `catkin_make` 报错可能是由于以下原因之一: - 缺少必要的库文件或头文件,例如 OpenSSL 或其他动态链接库[^2]。 - 系统中存在多个版本的库冲突,尤其是当系统自带库与手动编译的库共存时[^3]。 - Python 虚拟环境中未正确设置路径或缺少特定模块支持[^4]。 #### 解决方案步骤说明 ##### 方法一:通过 APT 包管理器安装预构建包 如果不需要最新版 GDAL,则可以通过官方仓库快速安装稳定版本: ```bash sudo add-apt-repository ppa:ubuntugis/ppa sudo apt update sudo apt install gdal-bin libgdal-dev python-gdal python3-gdal ``` 此方法适用于大多数场景,并可减少因手动编译带来的复杂性。 ##### 方法二:源码编译安装 GDAL 对于需要更高定制化需求的情况,可以采用源码方式重新编译 GDAL。具体操作如下: 1. **准备开发工具链** 首先确保已安装基础构建工具以及相关依赖项: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install build-essential autoconf automake libtool curl make checkinstall git \ pkg-config gcc g++ cmake wget unzip tar bzip2 zlib1g-dev libcurl4-openssl-dev \ libssl-dev libexpat1-dev libxml2-dev sqlite3 libsqlite3-dev proj-data proj-bin \ libproj-dev libgeos-dev libpq-dev postgresql-server-dev-all liblzma-dev \ libhdf5-serial-dev netcdf-bin libnetcdf-dev openjdk-8-jdk-headless -y ``` 2. **下载并解压 GDAL 源代码** 前往 [GDAL 官方网站](https://github.com/OSGeo/gdal/releases) 获取目标版本压缩包(此处假设为 v3.1.2),或者直接克隆 Git 仓库: ```bash wget https://github.com/OSGeo/gdal/archive/v3.1.2.tar.gz tar zxvf v3.1.2.tar.gz cd gdal-3.1.2/ ``` 3. **运行 configure 和 Make 进程** 执行以下命令完成配置阶段工作: ```bash ./configure --with-python=yes --prefix=/usr/local/gdal-3.1.2 make -j$(nproc) sudo make install ``` 如果希望将新版本加入全局 PATH,请执行额外指令更新环境变量: ```bash echo 'export PATH="/usr/local/gdal-3.1.2/bin:$PATH"' >> ~/.bashrc source ~/.bashrc ``` 4. **验证安装成果** 使用下面语句测试是否正常加载程序及其插件组件: ```bash ogrinfo --version gdalinfo --formats | grep GTiff ``` 上述过程解决了可能存在的 CURL_OPENSSL_4 符号丢失等问题,同时引入更多功能扩展选项。 ##### 方法三:Python Conda 环境下的独立部署 为了隔离不同项目间的相互干扰,推荐利用 Anaconda 创建专属虚拟空间来单独处理地理信息系统相关内容: ```bash # 初始化一个新的 conda env 并激活它 conda create -n geo_env python=3.7 numpy scipy pandas matplotlib jupyter notebook ipython pip setuptools wheel cython conda activate geo_env # 添加 channels 来获取最新的科学计算资源集合 conda config --add channels conda-forge conda config --set channel_priority strict # 开始正式导入核心软件套件 conda install gdal rasterio fiona shapely pyproj geopandas rtree descartes pip install contextily mapclassify ``` 这样既保留了灵活性又规避了许多潜在风险因素。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值