p值小于0.05拒绝还是接受_25常见种误区:P值、置信区间和统计功效

本文深入探讨了P值、置信区间和统计功效的误解,强调P值不是待验假设为真的概率,也不是表明模型正确的证据。作者指出,P值是数据与整个统计模型相容性的描述,而置信区间是模型在多次实验中覆盖真实效应的概率。此外,统计显著性并不等同于实际意义,且不应混淆P值与临界值。文章提醒研究者要理解统计概念的正确含义,避免在科研中犯常见错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🍎 连享会主页:lianxh.cn

b7c2e0107e4d156cf4e96be3f9c303fe.png
连享会 · 小直播


🍓 Stata 数据清洗 · 第二季

c775a23fe78c4b970889838494ca7109.png
连享会 · 计量专题


🍓 因果推断-内生性 专题
⌚   2020.11.12-15
🌲 主讲: 王存同 (中央财经大学);司继春(上海对外经贸大学)
👉 课程主页:https://gitee.com/arlionn/YG

5a13db6f74b363250810f27411448fcd.png

作者: 笑花心 (连享会助教)邮箱: [email protected]

温馨提示: 文中链接在微信中无法生效。请点击底部

Source: Greenland, S., Senn, S.J., Rothman, K.J. et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol 31, 337–350 (2016). 


目录

  • 1. 问题的引入

  • 2. 一些观点

    • 2.1 关于 P 值的定义

    • 2.2 关于 P 值的解读

    • 2.3 P 值和临界值的区别

    • 2.4 置信区间的性质

    • 2.5 统计功效的性质

  • 3. 25个常见误区

    • 3.1 单一P值涉及的常见误区

    • 3.2 P值比较和预测中常见误区

    • 3.3 置信区间涉及的常见误区

    • 3.4 统计功效涉及的常见误区

  • 4. 参考文献和扩展资料


自统计理论发展至今,P 值等统计指标已经被广泛应用于包括生物、心理、经济在内的多个领域,同时有关其含义和地位的争论和质疑也从未停止过。

Basic and Applied Social Psychology 曾在 2015 年发文全面禁止包括置信区间在内的检验指标。2019 年 3 月,Nature 发表的评论,“Scientists rise up against statistical significance”,再度引起了学术界对P值的思考。

考虑到假设检验在科学研究中的重要影响,Greenland 等 (2016) 围绕 P 值、置信区间和统计功效这三个指标展开了一系列探讨。现在我们将该文章中的主要观点介绍给大家。

1. 问题的引入

作者认为如今的研究在统计模型、假设和检验方面存在以下问题:

首先,任何统计推断方法都立足于大量前提假设,这些假设涉及数据收集和分析,结果阐明和展示各个过程。然而很多问题的出现正是由于统计模型所包含的假设缺乏真实性或者勉强称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值