用python将照片做成数据集_TensorFlow2.X使用图片制作简单的数据集训练模型

本文介绍了如何使用TensorFlow2.x创建自定义数据集,以手势识别为例,包括收集图片、构建数据集、预处理图像和构建tf.data.Dataset,为模型训练准备数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tensorflow内置了许多数据集,但是实际自己应用的时候还是需要使用自己的数据集,这里TensorFlow 官网也给介绍文档,官方文档。这里对整个流程做一个总结(以手势识别的数据集为例)。

1、 收集手势图片

方法多种多样了。我通过摄像头自己采集了一些手势图片。保存成如下形式,

2020040814191360.png

以同样的形式在建立一个测试集,当然也可以不弄,在程序里处理。

2、构建数据集

导入相关的包

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics

from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2

import os

import pathlib

import random

import matplotlib.pyplot as plt

读取文件

data_root = pathlib.Path('D:\code\PYTHON\gesture_recognition\Dataset')

print(data_root)

for item in data_root.iterdir():

print(item)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值