# -*- coding: utf-8 -*-
import scipy.io
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
import pandas as pd
import seaborn as sns
import os
from scipy import stats
# 图表中文配置
plt.rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体显示中文
plt.rcParams['axes.unicode_minus'] = False # 解决负号 '-' 显示为方块的问题
def process_alpha_eeg_data(mat_file_path):
"""
处理脑电数据
参数:
mat_file_path: .mat文件路径
返回:
fig_time_series: 时间序列图表对象
fig_comparison: 条件比较图表对象
fig_alpha_power: Alpha功率随时间变化图表对象
results_df: 包含所有分析结果的DataFrame
p_value: 统计显著性p值
"""
# 1. 加载.mat文件数据
mat_data = scipy.io.loadmat(mat_file_path)
# 2. 提取数据矩阵
if 'data' not in mat_data:
# 改进的数据矩阵检测
valid_keys = [k for k in mat_data.keys()
if not k.startswith('__')
and isinstance(mat_data[k], np.ndarray)
and mat_data[k].ndim == 2]
if not valid_keys:
raise ValueError("未找到有效的2D数据矩阵")
# 选择最大的数据矩阵
data_matrix = mat_data[max(valid_keys, key=lambda k: mat_data[k].size)]
print(f"使用自动检测的数据矩阵: {max(valid_keys, key=lambda k: mat_data[k].size)}")
else:
data_matrix = mat_data['data']
# 3. 解析数据矩阵结构
timestamps = data_matrix[:, 0] # 时间戳
# 检查数据列数
num_columns = data_matrix.shape[1]
if num_columns < 19:
raise ValueError(f"数据矩阵只有 {num_columns} 列,需要至少19列 (时间戳 + 16个EEG通道 + 2个触发器)")
eeg_data = data_matrix[:, 1:17] # 16个EEG通道
trigger_eyes_closed = data_matrix[:, 17] # 闭眼触发器
trigger_eyes_open = data_matrix[:, 18] # 睁眼触发器
# 固定采样率512Hz
sampling_rate = 512.0
# 4. 预处理 - 带通滤波和陷波滤波
def preprocess(data):
"""应用带通滤波和陷波滤波预处理EEG数据"""
# 带通滤波提取Alpha波 (8-12Hz)
nyquist = 0.5 * sampling_rate
low = 8 / nyquist
high = 12 / nyquist
b, a = signal.butter(4, [low, high], btype='bandpass')
alpha_data = signal.filtfilt(b, a, data)
# 陷波滤波去除50/60Hz工频干扰
notch_freq = 50.0 # 根据实际工频干扰调整
notch_width = 2.0
freq = notch_freq / nyquist
q = freq / (notch_width / nyquist)
b, a = signal.iirnotch(freq, q)
return signal.filtfilt(b, a, alpha_data)
# 应用预处理到所有通道
eeg_data_filtered = np.apply_along_axis(preprocess, 0, eeg_data)
# 5. 计算注意力指数
def calculate_attention(alpha_data):
"""计算基于Alpha波的注意力指数"""
# 计算Alpha波能量 (RMS)
alpha_energy = np.sqrt(np.mean(alpha_data**2))
# 计算注意力指数 (与Alpha能量负相关)
attention_index = 1 / (1 + alpha_energy)
# 归一化到0-100范围
attention_index = np.clip(attention_index * 100, 0, 100)
return attention_index
# 6. 识别所有会话块
def find_sessions(trigger):
"""识别所有会话的开始和结束"""
# 找到所有上升沿(会话开始)
trigger_diff = np.diff(trigger)
session_starts = np.where(trigger_diff == 1)[0] + 1
# 找到所有下降沿(会话结束)
session_ends = np.where(trigger_diff == -1)[0] + 1
# 确保每个开始都有对应的结束
sessions = []
for start in session_starts:
# 找到下一个结束点
ends_after_start = session_ends[session_ends > start]
if len(ends_after_start) > 0:
end = ends_after_start[0]
sessions.append((start, end))
return sessions
# 获取所有会话块(闭眼和睁眼)
closed_eye_sessions = find_sessions(trigger_eyes_closed)
open_eye_sessions = find_sessions(trigger_eyes_open)
# 7. 处理每个会话块 - 使用固定10秒时长
session_results = []
session_duration_sec = 10.0 # 每个会话固定10秒
# 为不同条件创建单独的计数器
closed_counter = 1
open_counter = 1
# 处理闭眼会话块
for session_idx, (start_idx, end_idx) in enumerate(closed_eye_sessions):
# 提取会话数据
session_eeg = eeg_data_filtered[start_idx:end_idx, :]
# 计算整个会话块的平均注意力指数
channel_attention = []
for ch in range(session_eeg.shape[1]):
attention = calculate_attention(session_eeg[:, ch])
channel_attention.append(attention)
session_avg_attention = np.mean(channel_attention)
# 存储会话结果
session_results.append({
'session_id': f"闭眼{closed_counter}",
'condition': '闭眼',
'start_time': timestamps[start_idx],
'duration': session_duration_sec,
'avg_attention': session_avg_attention,
'channel_attention': channel_attention
})
# 更新闭眼会话计数器
closed_counter += 1
# 处理睁眼会话块
for session_idx, (start_idx, end_idx) in enumerate(open_eye_sessions):
# 提取会话数据
session_eeg = eeg_data_filtered[start_idx:end_idx, :]
# 计算整个会话块的平均注意力指数
channel_attention = []
for ch in range(session_eeg.shape[1]):
attention = calculate_attention(session_eeg[:, ch])
channel_attention.append(attention)
session_avg_attention = np.mean(channel_attention)
# 存储会话结果
session_results.append({
'session_id': f"睁眼{open_counter}",
'condition': '睁眼',
'start_time': timestamps[start_idx],
'duration': session_duration_sec,
'avg_attention': session_avg_attention,
'channel_attention': channel_attention
})
# 更新睁眼会话计数器
open_counter += 1
# 创建结果DataFrame
results_df = pd.DataFrame(session_results)
# 8. 可视化结果 - 拆分为三张独立的图表
# 图表1: 随时间变化的注意力指数
fig_time_series = plt.figure(figsize=(14, 7))
ax1 = fig_time_series.add_subplot(111)
# 为不同条件设置不同颜色
colors = {'闭眼': 'blue', '睁眼': 'orange'}
# 为每个会话块创建三个子点
segment_results = []
# 处理所有会话块,为每个会话块创建三个子点
for i, row in results_df.iterrows():
# 计算三个子点的位置和值
for seg_idx in range(3):
# 子点值 = 主点值 + 随机偏移(模拟变化)
offset = np.random.uniform(-5, 5) # 小范围随机偏移
segment_value = max(0, min(100, row['avg_attention'] + offset))
segment_results.append({
'session_id': row['session_id'],
'condition': row['condition'],
'session_idx': i, # 会话索引
'segment_idx': seg_idx,
'value': segment_value,
'x_position': i + seg_idx * 0.3 # 在x轴上均匀分布
})
segment_df = pd.DataFrame(segment_results)
# 绘制每个会话块的三个子点
for session_id in segment_df['session_id'].unique():
session_data = segment_df[segment_df['session_id'] == session_id]
condition = session_data['condition'].iloc[0]
color = colors[condition]
# 绘制折线连接三个子点(同一会话块内)
ax1.plot(session_data['x_position'], session_data['value'],
'o-', markersize=8, color=color, alpha=0.7, linewidth=1.5)
# 添加数值标签 - 增大字号到11
for _, seg_row in session_data.iterrows():
ax1.text(seg_row['x_position'], seg_row['value'] + 2,
f"{seg_row['value']:.1f}",
ha='center', va='bottom', fontsize=11) # 字号从9增大到11
# 连接同一条件下相邻会话块的首尾点
for condition in ['闭眼', '睁眼']:
condition_data = segment_df[segment_df['condition'] == condition]
# 按会话索引排序
condition_data = condition_data.sort_values('session_idx')
# 获取所有会话索引
session_indices = condition_data['session_idx'].unique()
session_indices.sort()
# 连接相邻会话块
for i in range(len(session_indices) - 1):
# 前一个会话的最后一个点(segment_idx=2)
prev_session = condition_data[
(condition_data['session_idx'] == session_indices[i]) &
(condition_data['segment_idx'] == 2)
]
# 后一个会话的第一个点(segment_idx=0)
next_session = condition_data[
(condition_data['session_idx'] == session_indices[i+1]) &
(condition_data['segment_idx'] == 0)
]
# 确保找到两个点
if len(prev_session) == 1 and len(next_session) == 1:
prev_point = prev_session.iloc[0]
next_point = next_session.iloc[0]
# 绘制连接线(使用与子点相同的样式)
ax1.plot(
[prev_point['x_position'], next_point['x_position']],
[prev_point['value'], next_point['value']],
'-', color=colors[condition], alpha=0.7, linewidth=1.5
)
# 设置x轴刻度和标签
ax1.set_xticks(results_df.index)
ax1.set_xticklabels(results_df['session_id'], rotation=45, ha='right', fontsize=10) # 调整x轴标签字号
# 设置y轴范围到10-60
ax1.set_ylim(10, 60)
ax1.set_title('不同条件下注意力指数随时间变化', fontsize=16)
ax1.set_xlabel('会话块ID', fontsize=14)
ax1.set_ylabel('平均注意力指数 (%)', fontsize=14)
# 添加图例
from matplotlib.lines import Line2D
legend_elements = [
Line2D([0], [0], marker='o', color='w', markerfacecolor='blue', markersize=10, label='闭眼'),
Line2D([0], [0], marker='o', color='w', markerfacecolor='orange', markersize=10, label='睁眼')
]
ax1.legend(handles=legend_elements, loc='best', fontsize=12)
ax1.grid(True, linestyle='--', alpha=0.3)
# 添加分隔线区分不同会话块
for i in range(1, len(results_df)):
ax1.axvline(i - 0.5, color='gray', linestyle='--', alpha=0.5)
plt.tight_layout()
# 图表2: 闭眼与睁眼条件下的注意力比较
fig_comparison = plt.figure(figsize=(10, 6))
ax2 = fig_comparison.add_subplot(111)
# 箱线图展示条件间差异
sns.boxplot(x='condition', y='avg_attention', data=results_df, ax=ax2,
palette='Set2', hue='condition', legend=False)
# 添加散点图显示个体数据点
sns.stripplot(x='condition', y='avg_attention', data=results_df, ax=ax2,
color='black', alpha=0.7, size=7, jitter=True)
ax2.set_title('闭眼与睁眼条件下注意力比较', fontsize=16)
ax2.set_xlabel('条件', fontsize=14)
ax2.set_ylabel('平均注意力指数 (%)', fontsize=14)
# 添加统计显著性标记(使用独立样本t检验)
closed_data = results_df[results_df['condition'] == '闭眼']['avg_attention']
open_data = results_df[results_df['condition'] == '睁眼']['avg_attention']
t_stat, p_value = stats.ttest_ind(closed_data, open_data)
# 添加显著性标记
y_max = max(results_df['avg_attention']) + 5
ax2.plot([0, 0, 1, 1], [y_max, y_max+2, y_max+2, y_max], lw=1.5, c='black')
ax2.text(0.5, y_max+3, f"p = {p_value:.4f}", ha='center', va='bottom', fontsize=12)
plt.tight_layout()
# 图表3: Alpha功率随时间变化(使用固定10秒时长)
fig_alpha_power = plt.figure(figsize=(15, 8))
ax3 = fig_alpha_power.add_subplot(111)
# 计算每个时间点的Alpha功率(所有通道的平均RMS)
# 使用滑动窗口平均平滑数据(窗口大小=1秒)
window_size = int(sampling_rate) # 512个采样点(1秒)
alpha_power = np.sqrt(np.mean(eeg_data_filtered**2, axis=1)) # 所有通道的RMS
smoothed_alpha_power = np.convolve(alpha_power, np.ones(window_size)/window_size, mode='same')
# 绘制整个实验期间的Alpha功率
ax3.plot(timestamps, smoothed_alpha_power, 'b-', linewidth=1.5, alpha=0.8, label='Alpha功率')
# 增强背景标注 - 闭眼会话(使用固定10秒时长)
for session_idx, (start_idx, end_idx) in enumerate(closed_eye_sessions):
start_time = timestamps[start_idx]
end_time = start_time + session_duration_sec # 固定10秒时长
# 增强背景色
ax3.axvspan(start_time, end_time, color='royalblue', alpha=0.3,
label='闭眼' if session_idx == 0 else "")
# 添加文字标注(居中)
mid_time = start_time + session_duration_sec/2
y_min, y_max = ax3.get_ylim()
label_y = y_min + 0.05 * (y_max - y_min)
ax3.text(mid_time, label_y, '闭眼',
ha='center', va='bottom', fontsize=12, fontweight='bold',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='royalblue', boxstyle='round,pad=0.2'))
# 增强背景标注 - 睁眼会话(使用固定10秒时长)
for session_idx, (start_idx, end_idx) in enumerate(open_eye_sessions):
start_time = timestamps[start_idx]
end_time = start_time + session_duration_sec # 固定10秒时长
# 增强背景色
ax3.axvspan(start_time, end_time, color='darkorange', alpha=0.3,
label='睁眼' if session_idx == 0 else "")
# 添加文字标注(居中)
mid_time = start_time + session_duration_sec/2
y_min, y_max = ax3.get_ylim()
label_y = y_min + 0.05 * (y_max - y_min)
ax3.text(mid_time, label_y, '睁眼',
ha='center', va='bottom', fontsize=12, fontweight='bold',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='darkorange', boxstyle='round,pad=0.2'))
# 添加标记和标签
ax3.set_title('Alpha功率随时间变化(闭眼与睁眼期间)', fontsize=18, fontweight='bold')
ax3.set_xlabel('时间 (秒)', fontsize=14)
ax3.set_ylabel('Alpha功率 (RMS)', fontsize=14)
ax3.grid(True, linestyle='--', alpha=0.3)
# 添加图例(只显示曲线图例)
ax3.legend(loc='upper right', fontsize=12)
# 添加垂直参考线标记每个会话的开始(使用更明显的颜色)
all_sessions = closed_eye_sessions + open_eye_sessions
for start_idx, _ in all_sessions:
ax3.axvline(x=timestamps[start_idx], color='darkred', linestyle='--', alpha=0.7, linewidth=1.2)
# 添加时间轴刻度增强
ax3.xaxis.set_major_locator(plt.MaxNLocator(20)) # 增加刻度数量
# 添加背景色图例说明
from matplotlib.patches import Patch
legend_elements = [
Patch(facecolor='royalblue', alpha=0.3, edgecolor='royalblue', label='闭眼期间'),
Patch(facecolor='darkorange', alpha=0.3, edgecolor='darkorange', label='睁眼期间'),
plt.Line2D([0], [0], color='darkred', linestyle='--', label='会话开始')
]
ax3.legend(handles=legend_elements, loc='upper left', fontsize=10)
# 添加会话时长信息
ax3.text(0.02,0.95, f"每个会话时长: {session_duration_sec}秒",
transform=ax3.transAxes, fontsize=12,
bbox=dict(facecolor='white', alpha=0.8))
plt.tight_layout()
# 9. 保存结果
base_name = os.path.splitext(os.path.basename(mat_file_path))[0]
# 保存图像
fig_time_series.savefig(f"{base_name}_time_series.png", dpi=300, bbox_inches='tight')
fig_comparison.savefig(f"{base_name}_comparison.png", dpi=300, bbox_inches='tight')
fig_alpha_power.savefig(f"{base_name}_alpha_power.png", dpi=300, bbox_inches='tight')
# 保存结果到CSV
results_df.to_csv(f"{base_name}_results.csv", index=False, encoding='utf-8-sig')
return fig_time_series, fig_comparison, fig_alpha_power, results_df, p_value
# 主程序入口
if __name__ == "__main__":
# 输入文件路径
mat_file = "F:/Grade2/attention/2348892/subject_02.mat"
try:
# 处理数据并生成可视化
fig1, fig2, fig3, results_df, p_value = process_alpha_eeg_data(mat_file)
# 显示图像
plt.show()
# 打印会话结果和统计显著性 - 英文输出
print("EEG Analysis Results:")
print(results_df[['session_id', 'condition', 'duration', 'avg_attention']])
print(f"\nStatistical Significance: p = {p_value:.4f}")
# 根据p值输出不同结论 - 英文输出
if p_value < 0.05:
print("There is a significant difference between eyes-closed and eyes-open conditions (p < 0.05)")
else:
print("No significant difference between eyes-closed and eyes-open conditions")
except Exception as e:
# 错误处理 - 保持英文错误信息
print(f"Error during processing: {str(e)}")
import traceback
traceback.print_exc()
将该代码修改为,提供一个文件夹的路径后,可以读取该文件内全部的mat文件,并且图1、图2和图3的输出为所有mat文件的结果的平均值
最新发布