python路线寻优_使用模型预测控制和PID实现自动驾驶的车道保持

本文介绍了自动驾驶中的车道保持技术,重点探讨了模型预测控制(MPC)和PID在路径规划和控制中的应用。通过动力学模型预测车辆状态,优化损失函数以最小化轨迹误差、转向误差和速度变化,实现平滑驾驶体验。同时,文章还提到了PID控制器的工作原理,作为另一种控制策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文为 AI 研习社编译的技术博客,原标题 :

Lane keeping in autonomous driving with Model Predictive Control & PID

作者 |  Jonathan Hui

翻译 | 韧明

校对 | 酱番梨        整理 | 菠萝妹

原文链接:

https://medium.com/@jonathan_hui/lane-keeping-in-autonomous-driving-with-model-predictive-control-50f06e989bc9

照片来自 Campbell Boulanger

使用模型预测控制和PID实现自动驾驶的车道保持

(视频)黄色的路径是目标轨迹,绿色的路径是我们的汽车如何使用MPC移动。

自动驾驶的3大核心科技是定位(在哪里),感知(周围是啥)以及控制(咋开车呢)。通过车道检测,我们可以对车的行进路线进行路径规划。本篇文章主要通过一个自行车的动力学模型讨论车辆的加速、刹车和转向的模型预测控制。目的不仅在于尽可能地控制车辆轨迹,同时也还要尽可能使速度平滑以避免晕车和频繁的刹车。

模型预测控制主要在约束条件下使损失函数最小。例如,我们想要以100ms的周期调整转向和速度,在转向角度不能超过25°的约束下,最小化以规划的路径和实际路径之间的误差。我们通过传感器获取车辆的状态,比如速度,而我们的动作基于传感器读数以一个短的周期执行(例如1s)。例如,我们顺时针转向20°,然后每100ms周期减小1°。加入这些动作可以1秒钟之后的损失函数最小,我们将会采用第一个动作:顺时针转动20°,但是却并不执行后续的动作,而是在100ms后,重复优化过程。100ms后,有了新的读数,我们就重新计算下一个最优动作。模型预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值