时间序列模型matlab_平稳时间序列分析01---AR模型

本文详细介绍了AR模型在MATLAB中的应用,包括模型的定义、自回归系数多项式、延迟算子及其性质、AR模型的平稳性判别方法如特征根和平稳域判别。此外,还探讨了AR模型的统计特性,如均值、方差、协方差函数和自相关系数,并讲解了如何计算偏自相关系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

根据Wold分解定理,任意一个离散平稳时间序列都可以分解为一个确定性平稳序列和一个随机性平稳序列之和。且确定性序列可以表达为历史序列值的线性函数,而随机性序列可以表达为历史新息(历史纯随机波动)的线性组合,即

9538bd54771f24f47107fa6c02b16dc8.png

上式在统计上被称为自回归移动平均模型 (auto-regression moving average), 简称为 ARMA模型。

Wold分解定理保证了平稳序列一定可以用某个 ARMA 模型等价表达, 所以 ARMA模型是目前最常用的平稳序列拟合与预测模型。

ARMA 模型实际上是一个模型族, 它又可细分为 AR 模型, MA 模型和 ARMA 模型三大类。

AR模型的定义

具有如下结构的模型称为p阶自回归模型,简记为

abc027a5f11ea971a38c53cd2f582f0d.png

特别当

时,称为中心化
模型

ec2b00d0ff60523344b02a3a3f9f03a1.png

,称

的中心化序列

711bda09912974cbba7ed741dd1ed1a6.png

自回归系数多项式

引进延迟算子,中心化

模型又可以简记为

2a9c9abe2f0a66e4b25d89d010d141b4.png

称下式为p阶自回归系数多项式

3eb9a11a87fa845c77bf15464a98b1ee.png

延迟算子

延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻

记B为延迟算子,有

6849ef62469a39f1479b923762919ff1.png

所以

模型的简写形式如下导出

4f823fcc80170728374b9064500e0278.png

延迟算子的性质

ff97c6a7f9cb3621aa30db98fdfe0c15.png

ea66f26040b73c268887897826382b54.png

4ba65287010ba34795b9520c62821f34.png

f2792c9c5aab621901288b47c09a9c6a.png

11336e10dd823ccf08bce607df957739.png

AR模型平稳性判别

  • 判别原因

要拟合一个平稳序列的发展, 用来拟合的模型显然也应该是平稳的。AR 模型是常用的平稳序列的拟合模型之一, 但并非所有的 AR 模型都是平稳的。

  • 判别方法

特征根判别法

平稳域判别法

例1

考察如下四个模型的平稳性

dfc492aebf8cc5c002ed897d44eb649d.png

平稳特征

e0fb62746178a0135faf7487c921a498.png

非平稳特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值