逻辑回归损失函数_为何逻辑回归的损失函数不用平方误差

本文探讨逻辑回归的损失函数为什么不采用平方误差。平方误差在采用随机梯度下降法时可能导致非凸函数,从而在优化过程中陷入局部最优。通过仿真对比,极大似然误差损失函数展示出更快的收敛速度和避免局部最优的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归的损失函数为什么不采用平方误差?

01

关于逻辑回归

关于逻辑回归,我曾做过速成视频:《10分钟掌握逻辑回归》。在采用极大似然估计时,它的损失函数为:

c299df1e0efaf52f5bb7cbb2b5bfcfc0.png

当采用随机梯度下降法( SGD )求解参数时,上面公式的求和符号消失。则有:

53174eaf1b0be479d3d21cfae5179200.png

简单的公式,性感而动人

02

为什么不是平方误差?看不起我?

逻辑回归损失函数,如果用平方误差会是怎样的表现呢?我有点懒得编辑公式,直接上图说话:

8a281e173ef19b29de08ff2f25ba4625.png

看起来,梯度的结果只多了上面波浪线的部分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值