迭代收缩阈值算法matlab,一种基于自适应快速迭代收缩阈值算法的图像处理方法与流程...

本发明涉及一种基于自适应快速迭代收缩阈值算法(SAFISTA)的图像处理方法,特别适用于磁共振(MR)图像重建。针对MR图像重构速度和精度的需求,该方法通过动态调整迭代步长来提高收敛速度,从而在早期迭代中快速收敛并在后续迭代中保持高精度。实验结果显示,与现有算法相比,SAFISTA在图像细节、重建误差和迭代效率方面表现出优越性,尤其适用于不同部位的图像重建,具有较高的稳定性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ae3ba8d26bef70dfd6ef471043891df9.gif

本发明属于图像处理领域,尤其涉及一种基于自适应快速迭代收缩阈值算法的图像处理方法。

背景技术:

磁共振(MR)成像是一种安全、快速和准确的图像获取技术。它具有多个方向、参数和模式的优点,对人体亦无害。它能显示人体组织的解剖和功能信息。MR成像具有广泛的应用。然而,MR成像的扫描时间长,扫描速度慢,由于器官运动可能导致图像模糊,无法提供动态的实时图像和导航。所以,MR成像的缺点限制了功能成像的推广并给使用者带来额外的痛苦。

为此,该领域技术人员做了深入研究,并提出了压缩感知理论:在非常低于奈奎斯特采样率时,通过随机采样获得离散信号。在一些已知变换域中,根据信号的稀疏性通过非线性重构算法重建原始信号。

目前,构建一种基于压缩感知的稳定高效的重建算法是非常重要的。重构算法主要包括贪心算法和凸松弛算法。对于低维小规模信号,贪婪跟踪算法快速且质量好,如匹配追踪,正交匹配追踪和正则化正交匹配追踪。但是,对于这种高维度的大规模信号,很难满足重构精度的要求。凸松弛算法在重建中花费的时间更少。经典的凸函数优化算法主要包括共轭梯度,bre gman迭代和迭代重加权最小二乘。

为了提高磁共振图像重建的速度,提出了一种迭代收缩阈值算法和一系列改进的算法。这些方法直接解决了L1最小化问题。Daubechies等人提出了迭代算法(ISTA),该迭代算法在每次迭代步骤中应用阈值(或非线性收缩)的Landweber迭代来解决线性反问题。BeckA等人提出了一种新颖的迭代收缩阈值算法(FISTA),该算法保留了ISTA的计算简单性并提高了全局收敛速度。Xiaobo Qu等使用contourlet变换来稀疏表示曲线和边以解决CS-MRI的L1范数优化问题。Bayram I等研究了流行的迭代收缩/阈值算法的子带自适应版本,其针对每个子带采用不同的更新步骤和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值