signature=41471e84d9cfac87131ee10af68919f5,SAR-based vibrometry using the fractional Fourier transfo...

该文探讨了在合成孔径雷达(SAR)图像中,由于目标振动引入的微多普勒效应。提出了一种改进的伪子空间方法,用于估计振动目标的瞬时加速度,但当SAR图像中的杂波较强时,这种方法可能不可靠。为了解决这个问题,文章提出了两种新方法,可以在信号与杂波比率(SCR)低于3dB的低信噪比环境下进行振动估计。第一种方法是对之前提出的子空间方法的变种和扩展,结合DFRFT。第二种方法利用双波束SAR采集架构和扩展卡尔曼滤波器(EKF)来提取关于振动目标的信息。此外,还展示了如何利用这种SAR技术远程检测和分类建筑物内部或其他遮蔽物下的物体,基于振动位置和振动结构的历史记录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘要】

A fundamental assumption when applying Synthetic Aperture Radar (SAR) to a ground scene is that all targets are motionless. If a target is not stationary, but instead vibrating in the scene, it will introduce a non-stationary phase modulation, termed the micro-Doppler effect, into the returned SAR signals. Previously, the authors proposed a pseudo-subspace method, a modification to the Discrete Fractional Fourier Transform (DFRFT), which demonstrated success for estimating the instantaneous accelerations of vibrating objects. However, this method may not yield reliable results when clutter in the SAR image is strong. Simulations and experimental results have shown that the DFRFT method can yield reliable results when the signal-to-clutter ratio (SCR) > 8 dB. Here, we provide the capability to determine a target's frequency and amplitude in a low SCR environment by presenting two methods that can perform vibration estimations when SCR < 3 dB. The first method is a variation and continuation of the subspace approach proposed previously in conjunction with the DFRFT. In the second method, we employ the dual-beam SAR collection architecture combined with the extended Kalman filter (EKF) to extract information from the returned SAR signals about the vibrating target. We also show the potential for extending this SAR-based capability to remotely detect and classify objects housed inside buildings or other cover based on knowing the location of vibrations as well as the vibration histories of the vibrating structures that house the vibrating objects.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值