python把nan值去掉_python – Keras Neural Nets,如何删除输出中的NaN值?

博主在训练Keras神经网络时遇到了NaN输出的问题。起初,使用ReLU激活函数导致了更多NaN,后来改用sigmoid有所改善,但仍存在NaN。模型结构包括多个卷积层、池化层和dropout,最后的全连接层使用了sigmoid激活。寻求完全消除NaN的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我一直使用Keras从我的神经网络中获得一些NaN输出.我每10,000个结果只得到一个NaN.最初我有一个relu激活层进入最终的softmax层.这产生了更多的NaN结果.我将构成网络中最后两个密集层的激活函数从relu更改为sigmoid.这使问题更好,但我仍然得到NaN.关于如何完全消除楠的任何建议?

model = Sequential()

model.add(InputLayer((1, IMG_H, IMG_W)))

model.add(Convolution2D(32, 3, 3, activation = 'relu'))

model.add(Convolution2D(32, 3, 3, activation = 'relu'))

model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Dropout(0.3))

model.add(Convolution2D(64, 3, 3, activation = 'relu'))

model.add(Convolution2D(64, 3, 3, activation = 'relu'))

model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Dropout(0.3))

model.add(Flatten())

model.add(Dense(256, activation = 'sigmoid'))

model.add(Dropout(0.3))

model.add(Dense(64, activation = 'sigmoid'))

model.add(Dropout(0.3))

model.add(Dense(categories, activation = 'softmax'))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值