最短路径算法_最短路径之狄克斯特拉(Dijkstra)算法

本文介绍了Dijkstra算法用于寻找正权边图中从起点到所有顶点的最短路径。通过设置已确定最短路径的顶点集合S和未确定集合W,逐步将W中权重最小的顶点移入S,并进行松弛操作。文章详细展示了算法过程,并指出可以使用优先队列优化查找最小顶点的效率,以及如何提前结束算法找到特定目标点的最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相比较贝尔曼-福特算法需要每次对所有边进行松弛操作,时间复杂度为O(顶点数*边数),并且可以处理负权边,但是我们在实际生活中,计算路径的时候,极少遇到负权边的情况,所以只考虑正权边的情况下,可以采用更优化的Dijkstra算法。

Dijkstra算法设置了两个集合,设所有顶点集合为V,则:

S=所有与起点s已经确定最短路径、最低权重值的顶点。

W=V-S。

算法每次都将W中权重值最小的顶点u移入S中,并对u的所有边进行松弛操作。

看图说话:

63a1ad9b5c70e4fe393dd8c727983c95.png

初始化:

S=A0

W=B∞,C∞,D∞,E∞,F∞,G∞

1、需要对A的所有边进行松弛操作,结果

S=A0

W=B6,C4,D∞,E∞,F∞,G∞

2、取出W中最小的顶点C放入S,并对C所有边进行松弛操作,结果

S=A0,C4

W=B6,D9,E∞,F11,G∞

3、取出W中最小顶点B放入S,并对B所有边进行松弛操作,结果

S=A0,B6,C4

W=D9,E11,F11,G∞

4、取出W中最小的顶点D放入S,并对D所有边进行松弛操作,结果

S=A0,B6,C4,D9

W=E11,F10,G∞

5、取出W中最小的顶点F放入S,并对F所有边进行松弛操作,结果

S=A0,B6,C4,D9,F10

W=E11,G∞

6、取出W中最小的顶点E放入S,并对E所有边进行松弛操作,结果

S=A0,B6,C4,D9,E11,F10

W=G∞

7、取出W中最小的顶点G放入S,并对G所有边进行松弛操作,结果

S=A0,B6,C4,D9,E11,F10,G∞

至此,我们可以得出一个最短路径树:

A——B,6

A——C,4

A——C——D,9

A——B——E,11

A——C——D——F,10

A无法到达G

在这里有两个地方可以优化:

1、因为要取出权重最小的顶点,所以每次都要对W进行排序,采用遍历数组进行比较的算法,不如采用优先队列(PriorityQueue),因为优先队列采用了堆结构,排序时间复杂度是O (nlgn)。

2、如果我们只是想计算起点到某点的最短距离,那么在遍历的时候,检查一下取出的最小顶点是否是终点,如果是,跳出循环即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值