python用角度计算余弦值_Python计算N维向量的余弦夹角。

本文介绍了一种衡量两个向量间相似度的方法——余弦相似度,并提供了具体的Python实现代码。通过计算两个向量的夹角余弦值来评估它们之间的相似性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

又名余弦相似度,代码如下:

import math

def cos_dist(a, b):

if len(a) != len(b):

return None

part_up = 0.0

a_sq = 0.0

b_sq = 0.0

for a1, b1 in zip(a,b):

part_up += a1*b1

a_sq += a1**2

b_sq += b1**2

part_down = math.sqrt(a_sq*b_sq)

if part_down == 0.0:

return None

else:

return part_up / part_down

if __name__ == "__main__":

#d1 = (0.5, 0.8, 0.3)

#d2 = (0.9, 0.4, 0.2)

#q = (1.5, 1.0, 0)

d1 = (0.1, 0, 0.3)

d2 = (0, 0.9, 0.4)

q = (0, 0.8, 0.5)

print cos_dist(d1, q)

print cos_dist(d2, q)

### 使用 Python 批量计算余弦角度 为了实现批量计算余弦角度,在 PyTorch 中可以利用 `cosine_similarity` 函数。该函数能够高效地处理张量间的相似度计算,适用于大规模数据集。 对于一对或多对向量之间的余弦相似度计算,可以通过如下方式构建解决方案: #### 方法一:基于 PyTorch 的批量化计算 通过调整输入维度使得所有待比较的向量组合都能被一次性送入模型中完成运算。具体做法是在原有基础上增加一个批次维度(batch dimension),从而允许一次性的矩阵乘法操作来代替逐个配对的方式。 ```python import torch from torch.nn.functional import cosine_similarity def batch_cosine_similarity(vectors): """ 计算给定二维张量内每一行与其他各行之间余弦相似度 参数: vectors (Tensor): 形状为(N,D)的浮点型张量,其中N表示样本数量,D代表特征维数 返回: Tensor: 形状为(N,N)的结果张量,包含各组间余弦相似度得分 """ normed_vectors = vectors / vectors.norm(dim=-1, keepdim=True) similarity_matrix = torch.mm(normed_vectors, normed_vectors.t()) return similarity_matrix.fill_diagonal_(0).masked_fill(similarity_matrix != similarity_matrix, float('nan')) # 排除自对比项并处理可能存在的NaN[^1] vectors = torch.randn(5, 3) # 创建一组测试用三维向量 result = batch_cosine_similarity(vectors) print(result) ``` 上述代码片段展示了如何定义一个名为 `batch_cosine_similarity()` 的辅助函数用于接收任意大小但具有相同长度特征求解其相互关系;同时注意到了自我匹配情况下的特殊处理以及潜在数不稳定因素的影响。 另外得注意的是当涉及到更高阶几何结构比如二面角时,则需额外引入矢量叉积等概念来进行转换再求夹角,这超出了单纯依靠余弦距离所能解决的问题范畴[^2]。 最后提及到的概率分布生成部分则完全属于另一领域的内容,并不直接关联于此处讨论的主题[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值