svm预测模型 matlab,SVM回归预测模型

博主在尝试使用SVM进行压力预测,通过MATLAB实现。他们遇到的问题是,用前三个时刻的数据预测下一个时刻的压力,但模型能预测未来三个时刻,且发现预测结果重复。博主希望找出模型错误并优化,分享了涉及的数据处理、参数优化和模型训练等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我把14章,SVM用于回归建模的例子改动后,结果出现了问题:

首先,我描述一下,我想做的东西:

我要预测输出的压力,当前的输出的压力和前3个时刻的5个变量有关,我也想减少变量,可是预测的效果就不好了)。我将程序改动如下,同时我出现几个问题:

【1】我用第 208  209 210 个时刻的数据 作为输入数据,来预测211时刻的输出压力。但由于我编写的程序,输出总能得到3个,也就是可以预测 211 212 213 的输出压力。

刚开始,我是这么想的,212时刻的输出按我的本意的话,应该是知道了 209 210 211时刻的输入后才能预测到的,这个时候预测的肯定是错误的,不用理会。但后来我发现,    当我把输入改成209 210  211 时刻是,我发现我错了,因为此时给出的212  213 214 这3个输出数据中,212 213 和上面将 208 209 210作为输入时预测到的数据一摸一样。所以我的模型应该是错误的,可我看不出来。我想让作者给我看看。我把程序贴到下面了。

%% SVM神经网络的回归预测分析---压缩机四段出口压力预测

%% 清空环境变量

function output_press

tic;

close all;

clear;

clc;

format compact;

%% 数据的提取和预处理

data=xlsread('C:\Program Files\MATLAB\R2011a\work\data','sheet2','c5:g223');</

### 如何在Matlab中实现SVM预测模型 #### 创建和支持向量机(SVM)预测模型的基础概念 支持向量机(Support Vector Machine, SVM)是一种强大的机器学习工具,适用于解决分类和回归问题。通过将输入数据映射到更高维度的空间来寻找最优分离超平面,使得不同类别的样本尽可能分开[^3]。 #### 数据准备阶段 为了构建一个有效的SVM预测模型,在开始之前需要准备好训练集与测试集的数据。通常情况下,这涉及到收集原始数据、清理异常值并标准化特征变量等操作。对于时间序列预测任务而言,还需要特别注意对历史数据的选择及窗口大小的设计[^2]。 #### 使用MATLAB内置函数`fitcsvm`建立二元分类器 MATLAB提供了方便易用的支持向量机建模接口——`fitcsvm()` 函数。下面给出一段简单的代码片段展示如何利用该命令快速搭建起一个基础版的SVM分类器: ```matlab % 加载鸢尾花数据集作为示范 load fisheriris; X = meas; % 特征矩阵 Y = species;% 类标签向量 % 划分训练/验证集合 cv = cvpartition(size(X,1),'HoldOut',0.3); idxTrain = training(cv); idxTest = test(cv); % 训练SVM分类器 Mdl = fitcsvm(X(idxTrain,:), Y(idxTrain), ... 'Standardize',true,... 'KernelFunction','RBF',... 'BoxConstraint',1,... 'ClassNames',{'versicolor' 'virginica'}); ``` 上述例子中选择了径向基(RBF)核函数,并设置了盒约束参数(Box Constraint Parameter),这些都是影响最终性能的重要因素之一;另外还启用了自动缩放选项以便更好地适应不同类型的数据分布特性[^1]。 #### 应用已训练好的SVM模型进行预测 一旦完成了模型的学习过程之后就可以调用 `predict()` 方法来进行新实例类别归属判断了: ```matlab [Ypred,score] = predict(Mdl,X(idxTest,:)); confusionchart(Y(idxTest),Ypred) ``` 这里不仅返回了具体的分类结果同时也给出了置信度得分(score),有助于进一步分析决策边界附近的不确定性程度[^4]。 #### 时间序列预测中的特殊考虑事项 当把SVM应用于时间序列领域时,则需额外关注几个方面:首先是合理选取滞后阶数(lag order),其次是针对非平稳信号可能要先做差分变换使其变得稳定下来再送入算法内部处理;最后一点就是务必重视交叉验证环节以防止过拟合现象发生。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值