iec104点号_IEC104规约详细讲解全解.ppt

本文详细讲解了IEC104规约,包括其技术背景、规约结构、新概念、通讯特点等内容。该规约适应电力系统调度自动化发展,应用层与IEC101相同,是其网络化访问。介绍了适用网络、安全措施、控制信息格式,还提及防止报文丢失等通讯特点及相关超时时间、端口号等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

IEC104规约详细讲解全解

概论 必读文件 《中华人民共和国电力行业标准》 idtIEC60870-5-104:2002 技术背景 适应和引导电力系统调度自动化的发展,规范调度自动化及远动设备的技术性能 IEC104应用层与IEC101完全相同,是101的网络化访问 规约结构(1)- 模型 规约结构(2)- 适用网络 局域网(两层交换机连接的单网段、三层交换机或路由器连接的多网段) 广域网 (X.25、FR(帧中继)、ATM(异步传输模式) 、ISDN(综合服务数据网络) ) 基于TCP/IP的面向连接的网络服务。 IP网络本身的数据完整和安全性机制。 可采取的其他安全措施:客户端限制访问;路由表限制访问;数据软硬件加密。 新概念 APCI控制信息 可计数的信息传输功能-I 格式 可计数的确认功能 -S格式 启动,停止,测试功能-U格式 序列号记数,防止报文丢失,相对于101的FCB 规约结构(4)- I 格式 信息传输格式类型( I格式)的控制域 规约结构 ( 6 )S格式 规约结构 ( 7 )S格式 R->M (SOE) : 681F100002 001007900000110 0124 13d20a02 I(主动上报SOE)发送序号为10,接收序号为2. M->R: 6804010012 00 S(确认主动上报SOE) APCI01 0012 00 01S格式 确认序号为12 本端发送序号不变 正常情况下对端报文中的发送序号+1=本端本次报文中的接收序号 规约结构 ( 8 ) U格式 规约结构 ( 9 ) U格式 M->R : 6804070000 00 U STARTDT激活(生效) R->M: 68040B0000 00U STARTDT确认 本端发送U格式,本端发送序号保持不变 通讯特点(1)防止报文丢失和报文重复传送 通讯特点(2)防止报文丢失和报文重复传送 通讯特点(3)防止报文丢失和报文重复传送 通讯特点(4)防止报文丢失和报文重复传送 通讯特点(5)防止报文丢失和报文重复传送 通讯特点(6)防止报文丢失和报文重复传送 通讯特点(7)防止报文丢失和报文重复传送 通讯特点(8)和连接有关的4个超时时间t0,t1,t2,t3 t0:TCP连接建立的超时时间,即RTU(服务器)端进入等待连接的状态后,若超过此时间,主站(客户)端还没有Connect()过来就主动退出等待连接的状态;规约推荐的缺省值为30秒。 t1:RTU(服务器)端启动U格式测试过程后等待U格式测试应答的超时时间,若超过此时间还没有收到主站(客户)端的U格式测试应答,就主动关闭TCP连接;规约推荐的缺省值为15秒。 t2:RTU(服务器)端以突发的传送原因向主站(客户)端上送了变化信息或以激活结束的传送原因向主站(客户)端上送了总召唤/电度召唤结束后,等待主站(客户)端回S格式的超时时间,若超过此时间还没有收到,就主动关闭TCP连接;规约推荐的缺省值为10秒。 t3:当RTU(服务器)端和主站(客户)端之间没有实际的数据交换时,任何一端启动U格式测试过程的最大间隔时间;规约推荐的缺省值为20秒。 通讯特点(9)端口号 每一个TCP地址由一个IP地址和一个端口号组成。 每个连接到TCP-LAN上的设备都有自己特定的IP地址,而为整个系统定义的端口号却是一样的。(见RFC1700)。本标准要求,端口号2404由IANA(互联网数字分配授权)定义和确认。 通讯特点(10)未被确认的 I 格APDU 最大数目 k 和最迟确认数目 w k表示在某一特定的时间内未被DTE确认(即不被承认)的连续编号的I格式APDU的最大数目。每一I格式帧都按顺序编好号,从0到模数n-1,这里的“模数”是指序列号对参数n的模数。以n为模的操作中k值永远不会超过n-1。(见 ITU-T X.25推荐的2.3.2.2.1和2.4.8.6)。 当未确认I格式APDU达到k个时,发送方停止传送。 接收方收到w个I格式APDU后确认。 k值的最大范围:1到32767(2的十五次方-1)APDU,精确到一个 APDU. w值的最大范围:1到32767 APDU,精确到一个APDU。(推荐:w不应超过三分之二的k)。 。规约推荐:k值为12,w值为8 规约特点(11)和IEC 60870-5-101的比较 采用IEC 60870-5-101的平衡传输模式,通过TCP/IP协议传输远动信息;应用层和101完全相同,是101的网络化访问。 保留1个启动字符,1个帧长L;删除第2个启动字符,第2个帧长L,链路控制域(C),链路地址域

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值