cuda解码 opengl 显示_CUDA与OpenGL互操作

在处理大量数据时,CUDA用于并行计算,OpenGL擅长后期渲染。CUDA计算结果存储在GPU中,直接在CUDA和OpenGL间交互数据可避免CPU传输耗时。本文介绍了如何注册OpenGL缓冲区为CUDA资源,通过CUDA API映射和写入数据,最后在OpenGL中直接渲染,提升效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当处理较大数据量的时候,往往会用GPU进行运算,比如OpenGL或者CUDA。在实际的操作中,往往CUDA实现并行计算会比OpenGL更加方便,而OpenGL在进行后期渲染更具有优势。由于CUDA中的运算结果存储在GPU中,如果将数据download到CPU,然后再将CPU中的数据上传到GPU,使用OpenGL进行渲染,中间的GPU与CPU的交互会很耗时,毕竟使用GPU的目的就是为了加速,这样的数据传输会降低效率。

接下来简要说一下如何使CUDA和OpenGL互操作来实现GPU中数据的交互传输,而不用通过主机的CPU。

一、首先是在OpenGL中声明这样一个buffer。

cudaGraphicsResource_t cudaBuffer;

然后将Buffer注册给纹理texture(假定已经提前声明一个纹理texture)

cudaGraphicsGLRegisterImage(&cudaBuffer, texture, GL_TEXTURE_2D, cudaGraphicsRegisterFlagsWriteDiscard);

二、好了,这样我们只需要把CUDA计算出来的数据写入cudaBuffer中就行了。如下:

利用Cuda中的两个API设置cudaBuffer为映射Map,并将一个cuda数组cudaArray绑定到cudaBuffer。

cudaError_t err;

err = cudaGraphicsMapResources(1, cudaBuffer, 0);

err = cudaGraphicsSubResourceGetMappedArray(&cudaArray, cudaBuffer, 0, 0);

那么接下来的就是把数据写入cudaArray中的事情了,假设我有一个数据指针pResult指向GPU中的一段内存,这段内存中保存的就是CUDA的运算结果(一幅4通道图像),我只需要将其copy到cudaArray就行了。注意是cudaMemcpyDeviceToDevice,这个很快的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值