kl散度与js散度_数据集相似度度量之KL&JS散度

本文介绍了KL散度和JS散度的概念、作用及实现方式。KL散度用于衡量两个概率分布的差异,但不具备对称性;JS散度在KL散度基础上改进,解决了不对称问题。内容涵盖了离散标签和连续型标签的计算方法,并提供了Python实现离散变量的JS散度的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、KL散度

1、什么是KL散度

KL散度又叫相对熵,是描述两个概率分布差异的一种方法,有人将KL散度称为KL距离,但实际上它不满足距离概念中的两个条件,a、对称性,即D(P||Q)=D(Q||P);  b、三角不等式;

2、有什么样的作用

模型效果好不好,在数据划分上大有讲究,如果训练集与测试集数据分布不满足同分布,模型表现必然不会太好,因此划分数据集之后对于两个数据分布验证变得非常重要,针对分类任务验证概率质量相似度,针对回归问题验证两者的概率密度相似度,两者分布越相似,相对熵越接近于0;

3、实现方式

a、离散性标签,各标签概率及相应对数求和操作

b、连续型标签,针对x的无个数区间概率及对数积分操作

from sklearn import datasetsfrom collections import Counterimport numpy as np
random_state=32def getData(n_classes,weights,n_features,n_samples):
train,label=datasets.make_classification(n_classes=n_classes,class_sep=2,weights=weights,n_features=n_features,n_samples=n_samples,random_state=random_state)return train,labeldef computePdotLnP(p,q,I=True):if I:return p*np.log(p/q)else:return p*np.log(p/q)*0.01def computeKL(train_label:np.array,test_label:np.array):
KlValue=0.0n_trai
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值