一、KL散度
1、什么是KL散度
KL散度又叫相对熵,是描述两个概率分布差异的一种方法,有人将KL散度称为KL距离,但实际上它不满足距离概念中的两个条件,a、对称性,即D(P||Q)=D(Q||P); b、三角不等式;
2、有什么样的作用
模型效果好不好,在数据划分上大有讲究,如果训练集与测试集数据分布不满足同分布,模型表现必然不会太好,因此划分数据集之后对于两个数据分布验证变得非常重要,针对分类任务验证概率质量相似度,针对回归问题验证两者的概率密度相似度,两者分布越相似,相对熵越接近于0;
3、实现方式
a、离散性标签,各标签概率及相应对数求和操作
b、连续型标签,针对x的无个数区间概率及对数积分操作
from sklearn import datasetsfrom collections import Counterimport numpy as np
random_state=32def getData(n_classes,weights,n_features,n_samples):
train,label=datasets.make_classification(n_classes=n_classes,class_sep=2,weights=weights,n_features=n_features,n_samples=n_samples,random_state=random_state)return train,labeldef computePdotLnP(p,q,I=True):if I:return p*np.log(p/q)else:return p*np.log(p/q)*0.01def computeKL(train_label:np.array,test_label:np.array):
KlValue=0.0n_trai