在windows笔记本电脑部署GLM4大模型

(笔记本电脑:intel处理器i9-13900HX、64G内存、NVIDIA RTX4080(12G)、操作系统windows11家庭版)

一、下载anaconda3

1.清华镜像源下载anaconda3。下载地址:Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

在网页上找到Anaconda3-2024.02-1-Windows-x86_64.exe,点击下载。

2.双击安装文件,选择安装目录D:\anaconda3。

3.配置系统环境变量。在path 中添加环境变量:D:\anaconda3,D:\anaconda3\Scripts,D:\anaconda3\Library\bin,D:\anaconda3\Library\mingw-w64\bin,D:\anaconda3\Library\user\bin

二、创建chatglm虚拟环境

1.运行Windows PowerShell,创建虚拟环境chatglm:

conda create -n chatglm。

2.激活虚拟环境:conda activate chatglm。

三、安装git命令运行环境

打开网址https://git-scm.com/download/win,点击“64-bit Git for Windows Setup”,下载文件Git-2.45.2-64-bit.exe,双击安装。

大模型glm3部署到笔记本本地CPU可能会面临一些挑战。首先,大模型意味着它的大小和复杂度较大,在本地的笔记本CPU上可能无法完全支持。因此,在部署之前,我们需要确保笔记本的处理能力和内存足以支持该模型的运行。 在部署大模型glm3之前,我们还需要提前进行一些准备工作。首先,我们需要安装和配置适当的软件环境,例如R或Python的科学计算库。其次,我们需要下载并导入所需的数据集和训练好的模型参数。 在将大模型glm3部署到笔记本本地CPU上时,我们需要注意以下几点: 1. 内存管理:由于大模型的复杂性和大小,可能会占用较大的内存空间。因此,我们需要注意内存的管理,确保足够的内存可用,并及时释放不需要的内存。 2. CPU资源分配:大模型的训练和推断过程可能会占用大量的CPU资源。在部署之前,我们可以通过限制其他应用程序的资源使用来提供更多的CPU资源给模型运行。 3. 模型优化:为了在本地CPU上更高效地运行大模型glm3,我们可以考虑一些模型优化策略,例如模型压缩、并行计算等。这些策略可以帮助减少模型的大小和计算复杂度,提高模型的性能。 4. 计算效率:大模型的训练和推断过程需要大量的计算资源。在部署之前,我们可以尝试使用更高效的算法或技术来减少计算的时间和资源消耗。 总结而言,将大模型glm3部署到笔记本本地CPU需要我们考虑资源管理、模型优化和计算效率等方面。在合理利用资源和采用适当的优化策略下,我们可以在本地CPU上成功部署和运行大模型glm3。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值