
KMP算法是一种用于字符串匹配的算法,由D.E.Knuth,J.H.Morris和V.R.Pratt提出的,因此人们称它为克努特—莫里斯—普拉特操作(简称KMP算法)。
入门字符串问题,最难懂的应该就要数KMP算法了吧。
今天,让我们来深入理解一下KMP算法的基本原理和实现方法。
算法解析
KMP算法能够在O(N)的时间内完成字符串自身的匹配,其精髓主要在于next数组。next[i]的意义是在字符串的前 i 个字符中,前缀等于后缀的最长的长度是多少。这么说可能有点抽象,我们来看一下下面这个例子。
对于 ABAABB 这个字符串,他的next数组的值如下所示(为了方便说明,字符串的第一个字符的位置记为1):

以next[5]举一个更详细的例子:

相信大家对next数组的含义有了清楚的认知,接下来讲一讲怎么求next数组。
利用动态规划(DP)的思想,假设我们现在要求next[i + 1]的值,而next[1] ~ next[i] 全部都已经求出来了,那么我们知道了前i个字符组成的字符串的最长能匹配的前缀和后缀,那么可以直接判断下一个是否相等(记字符串数组为 s[]):
- 如果二者相等(即 s[next[i]] + 1 == s[i + 1]),那么很显然直接 +1 就可以了。
- 如果二者不相等,那么不断往前跳一个next 来尝试是否能匹配,直到能够匹配时跳出循环,进行转移。
核心代码
cin
时间复杂度证明
考虑算法中产生计算的地方,第4行的 for 是O(N)的,这点毋庸置疑,主要的问题出在第5行的 while 上,那么我们需要证明的就是这个循环累计是O(N)的。我们的目标已经明确了,接下来考虑最坏情况。要使 while 进行尽量多次的循环,那么这个字符串的构成一定是一段重复的字符,在加上一个不同的字符,并如此反复,具体见下图:

在每一段中A的个数显然是要相同的。如果不同就不能使 while 进行最多次的循环。

这样我们就证明了 while 的总循环次数在最坏的情况下是O(N)的,那么KMP算法的总复杂度显然是O(N)的。
【信息学竞赛从入门到巅峰】,一个专注于分享OI/ACM常用算法及知识的公众号。