logistic回归 如何_【R语言进阶】Logistic回归及哑变量设置

本文详细介绍了如何使用R语言进行Logistic回归分析,包括导入数据、将分类变量转换为因子型、单因素和多因素Logistic回归的步骤,以及哑变量的设置和参照选择。通过broom包整理模型结果,展示OR值、95%可信区间和p值,并探讨了无序多分类变量的哑变量处理技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

946a8f5c78d04a7c7e9d1fb4d07f97e6.gif点击上方“蓝字”,我们一起分析数据

Logistic回归是最常用的多因素回归模型,在医学研究中,常用于研究疾病的危险因素,下面我们一起来看看,R语言是如何实现Logistic回归的。

1

第一步 导入数据

首先,在excel里全选数据集,右键复制。

7d42056339e5b2a6761192feda8a7be0.png

然后,在Rstudio中,输入:

mydata "clipboard")

查看数据:

b2909dda829b5f66ad81e3790f75fdcd.png

2

第二步 分类变量和等级变量转成因子型变量

mydata$sex$sex,levels=c(0,1),                  labels=c("Female","Male"))mydata$work$work
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值