python 回归方程及回归系数的显著性检验_回归方程及回归系数的显著性检验

本文探讨了Python中如何进行回归方程的显著性检验,包括回归平方和与剩余平方和的概念,以及如何通过复相关系数评估回归效果。通过统计量F检验,判断自变量与因变量间是否存在线性关系,并根据显著性水平决定回归效果是否显著。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

.

3

回归方程及回归系数的显著性检验

§

1、回归方程的显著性检验

回归平方和与剩余平方和

(1)

与自变量

,

是否确实存在线性关系呢?这回归效果如何呢?因变量

建立回归方程以后

我们要进一步研究因变

,

为此

,

取值的变化规律。

的每次是需要进行统计检验才能加以肯定或否定

常用该次观

侧值

,

每次观测值是有波动的

,

这种波动常称为变差

,

的变差大小取值

而全部次观测

值的总变差可由总的来表示

,

的差

(

称为离差与次观测值的平均值

)

离差平方和

,

:

其中

与均值之差的平方和

, ,

是回归值

它反映了自变量

称为回归平方和

(

其自由度为自变量的个数

)

的变化所引起的的波动

,

与回归值之差的平方和是实测值

,

称为剩余平方和

(

或称残差平方和

),

的自由度

为其自由度。是由试验误差及其它因素引起的

,

。总的离差平方和

,

反之因此

,

即小大则是确定的

, ,

如果观测值给定

,

是确定的则总的离差平

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值