实对称矩阵必可相似对角化的证明

文章详细证明了实对称矩阵的三个引理和一个定理,即实对称矩阵的特征值是实数,秩相等,零空间与像空间无交,并最终证明了实对称矩阵可以被相似对角化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引理 1: 实对称矩阵的特征值都是实数。

证明:设 AAAnnn 阶实对称阵,λ0∈C\lambda_0 \in Cλ0CAAA 的任一特征值,α=(a1,a2,⋯ ,an)T∈Cn\alpha = (a_1, a_2, \cdots, a_n)^T \in C^nα=(a1,a2,,an)TCn 是对应的特征向量,即 Aα=λ0αA\alpha = \lambda_0\alphaAα=λ0α。上式两边同时左乘 α‾\overline \alphaα,即α\alphaα 的共轭,则有 α‾TAα=λ0α‾Tα\overline \alpha ^T A \alpha = \lambda_0 \overline \alpha^T \alphaαTAα=λ0αTα。由于 α\alphaα 是特征向量,所以α\alphaα非零,故 α‾Tα=∣∣α∣∣>0\overline \alpha^T \alpha = ||\alpha||>0αTα=∣∣α∣∣>0。对于共轭矩阵,有 AB‾=A‾⋅B‾\overline{AB} = \overline{A}\cdot \overline{B}AB=AB 注意到 AAA 为实对称阵,所以A‾=A\overline A = AA=A,所以有 α‾TAα‾=αTAα‾\overline{\overline \alpha^T A \alpha} = \alpha^T A \overline \alphaαTAα=αTAα,由于 AAA 是实对称矩阵,显然有 αTAα‾=α‾TAα\alpha^T A \overline \alpha = \overline \alpha^T A \alphaαTAα=αTAα。由此可得 α‾TAα‾=α‾TAα\overline{\overline \alpha^T A \alpha} = \overline \alpha^T A \alphaαTAα=αTAα,即 α‾TAα\overline \alpha ^T A \alphaαTAα 是一个实数。从而, λ0=α‾TAαα‾Tα\lambda_0 = \frac{\overline \alpha ^T A \alpha}{\overline\alpha^T \alpha}λ0=αTααTAα 也是实数。

引理2:AAAnnn 阶实对称阵,则 r(A)=r(A2)=r(A3)=⋯r(A) = r(A^2) =r(A^3)=\cdotsr(A)=r(A2)=r(A3)=

证明:先证明 r(ATA)=r(A)r(A^T A) = r(A)r(ATA)=r(A),若 xxxAx=0Ax=0Ax=0 的解,显然 xxx 也是 ATAx=0A^TAx=0ATAx=0 的解;若 xxxATAx=0A^TAx = 0ATAx=0 的解,两边同乘 xTx^TxT,就有 xTATAx=0x^T A^TAx = 0xTATAx=0,即 (Ax)TAx=0(Ax)^TAx = 0(Ax)TAx=0,即 ∣∣Ax∣∣=0||Ax||=0∣∣Ax∣∣=0 ,也就是说 Ax=0Ax=0Ax=0。由此可以得到 ATAx=0A^TAx = 0ATAx=0Ax=0Ax=0Ax=0 是同解的,所以 ATAx=0A^TAx = 0ATAx=0Ax=0Ax=0Ax=0 维度相同,假设维度都是 rrr,所以 r(ATA)r(A^TA)r(ATA)r(A)r(A)r(A) 都是 n−rn-rnr 维。又 AAA 是实对称矩阵,即 AT=AA^T=AAT=A,所以 r(A)=r(ATA)=r(A2)r(A) = r(A^TA) = r(A^2)r(A)=r(ATA)=r(A2)。进一步我们就有 r(A)=r(A2)=r(A4)=⋯=r(A2n)r(A) = r(A^2) = r(A^4)=\cdots=r(A^{2n})r(A)=r(A2)=r(A4)==r(A2n)。又根据 r(AB)≤r(A)r(AB)\leq r(A)r(AB)r(A) 可得 r(A2(n−1))≤r(A2n−1)≤r(A2n)r(A^{2(n-1)}) \leq r(A^{2n-1})\leq r(A^{2n})r(A2(n1))r(A2n1)r(A2n),就可以得到 r(A)=r(A2)=r(A3)=r(A4)=⋯r(A) = r(A^2) = r(A^3) = r(A^4) = \cdotsr(A)=r(A2)=r(A3)=r(A4)=

引理3:AAAnnn 阶实对称阵,则 ker(A)∩im(A)=∅ker(A)\cap im(A) = \emptysetker(A)im(A)= 并且 ker(A)=ker(A2)=ker(A3)=⋯ker(A) = ker(A^2) = ker(A^3) = \cdotsker(A)=ker(A2)=ker(A3)=

证明:关于ker(A)ker(A)ker(A)im(A)im(A)im(A)是什么:首先矩阵A的image就是,矩阵A所有列向量的线性组合,也就是A的列空间。然后,矩阵A的kernel就是,矩阵Ax=0的解集(齐次方程组全部的解),也就是A的零空间。矩阵AAA的列空间和零空间中的向量是相互正交的,肯定不线性相关,所以它们的交集自然是空集。
由引理2下的证明,Ax=0Ax=0Ax=0ATAx=0A^TAx=0ATAx=0同解,而对于实对称矩阵,AAAA2A^2A2 同解。可以推广到 A、A2、A3、⋯A、A^2、A^3、\cdotsAA2A3 同解。自然有 ker(A)=ker(A2)=ker(A3)=⋯ker(A) = ker(A^2) = ker(A^3) = \cdotsker(A)=ker(A2)=ker(A3)=.

定理: 实对称矩阵必可相似对角化。

证明:

  1. 当 n = 1 时

    A=[a11]A=[a_{11}]A=[a11]E=[1]E = [1]E=[1] , E−1AE=A=∧E^{-1}AE=A=\wedgeE1AE=A=

  2. 假设 n = k - 1 时成立
    当 n = k 时,假设其中一个特征值为 λ1\lambda_1λ1,由引理1可知,λ1\lambda_1λ1必为实数,可以找到它对应的特征向量中的一个单位向量 η1\eta_1η1。另外再可以找到一个正交阵 T=(η1,η2,⋯ ,ηn)T=(\eta_1,\eta_2,\cdots,\eta_n)T=(η1,η2,,ηn)
    T−1AT=(T−1Aη1,T−1Aη2,⋯ ,T−1Aηn) T^{-1} A T = (T^{-1}A \eta_1, T^{-1}A \eta_2,\cdots, T^{-1} A \eta_n) T1AT=(T1Aη1,T1Aη2,,T1Aηn)
    其中, Aη1=λ1η1A\eta_1=\lambda_1\eta_1Aη1=λ1η1,所以 T−1ATT^{-1}ATT1AT 可以表示为:
    T−1AT=(T−1λ1η1,T−1Aη2,⋯ ,T−1Aηn) T^{-1} A T = (T^{-1}\lambda_1 \eta_1, T^{-1}A \eta_2,\cdots, T^{-1} A \eta_n) T1AT=(T1λ1η1,T1Aη2,,T1Aηn)

    根据正交矩阵的定义,T−1T=ET^{-1}T = ET1T=E,即:
    (T−1η1,T−1η2,⋯ ,T−1ηn)=E (T^{-1}\eta_1,T^{-1}\eta_2,\cdots,T^{-1}\eta_n) = E (T1η1,T1η2,,T1ηn)=E
    由此可得:
    T−1η1=(1,0,⋯ ,0)TT−1η2=(0,1,⋯ ,0)T⋯T−1ηn=(0,0,⋯ ,1)T T^{-1}\eta_1 = (1,0,\cdots,0)^T\\ T^{-1}\eta_2 = (0,1,\cdots,0)^T\\ \cdots\\ T^{-1}\eta_n = (0,0,\cdots,1)^T T1η1=(1,0,,0)TT1η2=(0,1,,0)TT1ηn=(0,0,,1)T
    则:
    T−1AT=(T−1λ1η1,T−1Aη2,⋯ ,T−1Aηn)=(λ1T−1η1,T−1Aη2,⋯ ,T−1Aηn)=[λ1α2⋯αn⋮0Pn−1⋮] \begin{align*} T^{-1} A T &= (T^{-1}\lambda_1 \eta_1, T^{-1}A \eta_2,\cdots, T^{-1} A \eta_n)\\ & = (\lambda_1T^{-1} \eta_1, T^{-1}A \eta_2,\cdots, T^{-1} A \eta_n) \\ & = \begin{bmatrix} \lambda_1&\alpha_2&\cdots&\alpha_n&\\ \vdots&&&&\\ 0&&P_{n-1}&&\\ \vdots&& &&\\ \end{bmatrix} \end{align*} T1AT=(T1λ1η1,T1Aη2,,T1Aηn)=(λ1T1η1,T1Aη2,,T1Aηn)=λ10α2Pn1αn
    由于 AAA 为实对称矩阵,所以 AT=AA^T = AAT=A,由于 TTT 为正交矩阵,所以 T−1=TTT^{-1} = T^TT1=TT,则:
    (T−1AT)T=TTAT(T−1)T=T−1A(TT)T=T−1AT \begin{align*} (T^{-1}AT)^T & = T^TA^T(T^{-1})^T \\ & = T^{-1}A(T^T)^T \\ & = T^{-1}A T \end{align*} (T1AT)T=TTAT(T1)T=T1A(TT)T=T1AT
    也就是 T−1ATT^{-1} A TT1AT 也是实对称矩阵,所以向量 (α2,⋯ ,αn)=0(\alpha_2,\cdots,\alpha_n)=0(α2,,αn)=0,且 PPPn−1n-1n1 阶实对称矩阵。

    根据假设,存在可逆矩阵 T2T_2T2 使得 T2−1PT2=∧n−1T_2^{-1}P T_2 = \wedge_{n-1}T21PT2=n1

    所以我们就可以找到一个可逆矩阵 TfT_fTf (TfT_fTf必然可逆,因为 ∣Tf∣=∣T2∣≠0|T_f|=|T_2|\neq 0Tf=T2=0):

    Tf=T[1⋯0⋯⋮0T2⋮]Tf−1=[1⋯0⋯⋮0T2−1⋮]T−1Tf−1ATf=[1⋯0⋯⋮0T2−1⋮]T−1AT[1⋯0⋯⋮0T2⋮]=[1⋯0⋯⋮0T2−1⋮][λ1⋯0⋯⋮0Pn−1⋮][1⋯0⋯⋮0T2⋮]=[λ1⋯0⋯⋮0T2−1Pn−1T2⋮]=[λ1⋯0⋯⋮0∧n−1⋮] \begin{align*} T_f &= T\begin{bmatrix} 1 & \cdots& 0 & \cdots& \\ \vdots&& && \\ 0 & & T_2 && \\ \vdots&& && \\ && && \end{bmatrix} \\ T_f^{-1} &=\begin{bmatrix} 1 & \cdots& 0 & \cdots& \\ \vdots&& && \\ 0 & & T_2^{-1} && \\ \vdots&& && \\ && && \end{bmatrix} T^{-1}\\ T_f^{-1}AT_f & =\begin{bmatrix} 1 & \cdots& 0 & \cdots& \\ \vdots&& && \\ 0 & & T_2^{-1} && \\ \vdots&& && \\ && && \end{bmatrix}T^{-1} A T \begin{bmatrix} 1 & \cdots& 0 & \cdots& \\ \vdots&& && \\ 0 & & T_2 && \\ \vdots&& && \\ && && \end{bmatrix} \\ &= \begin{bmatrix} 1 & \cdots& 0 & \cdots& \\ \vdots&& && \\ 0 & & T_2^{-1} && \\ \vdots&& && \\ && && \end{bmatrix} \begin{bmatrix} \lambda_1&\cdots&0&\cdots\\ \vdots&&&&\\ 0&&P_{n-1}&&\\ \vdots&& &&\\ && && \end{bmatrix} \begin{bmatrix} 1 & \cdots& 0 & \cdots& \\ \vdots&& && \\ 0 & & T_2 && \\ \vdots&& && \\ && && \end{bmatrix} \\ &= \begin{bmatrix} \lambda_1 & \cdots& 0 & \cdots& \\ \vdots&& && \\ 0 & & T_2^{-1}P_{n-1}T_2 && \\ \vdots&& && \\ && && \end{bmatrix} \\ &= \begin{bmatrix} \lambda_1 & \cdots& 0 & \cdots& \\ \vdots&& && \\ 0 & & \wedge_{n-1}&& \\ \vdots&& && \\ && && \end{bmatrix} \end{align*} TfTf1Tf1ATf=T100T2=100T21T1=100T21T1AT100T2=100T21λ100Pn1100T2=λ100T21Pn1T2=λ100n1

    这就得到了A的相似对角阵了。

    事实上,这个证明不仅证明了实对称矩阵必可相似对角化,还证明了实对称矩阵必可以使用正交矩阵相似对角化。

    但是我感觉数学归纳法并没有触及到实对称矩阵可以相似对角化的本质,触及灵魂的证明我还在思考和寻找中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值