拉格朗日对偶性

本文摘自李航《统计学习方法》,深入浅出解析拉格朗日对偶性,涵盖等式约束优化及不等式约束优化原理。适合初学者及复习者阅读,配以直观易懂的例子,帮助理解复杂的数学概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拉格朗日对偶性

摘自李航<统计学方法>

看了一圈关于对偶性的解释,还是李航老师的解释比较容易懂一些,摘录下来,便于复习和大家学习.

关于等式约束优化(拉格朗日条件),不等式约束优化(KKT条件)的理解,知乎回答:彭一洋的回答 - 知乎,写的非常直观易理解.如果对拉格朗日条件不熟悉的话,建议看对偶性之前先看看上面的文章.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值